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Executive summary 

Modelling the heartbeat is a highly complex task that involves several scales and different tightly 

coupled problems. A large number of spatial orders of magnitude are linked, from the microscopic 

cell arrangement into a volumetric description, to the macroscopic shape of the cardiac chambers. In 

the same way, several temporal scales coexist, from the fast intracellular chemical reactions to the 

long term remodeling of the heart. 

 

The activity involves the work on the preparation of the Finite Element Analysis codes, Alya and PAK 

to habilitate the coupling of the excitation-contraction model into a full biventricular human heart 

simulation. Deep discussions and agreements have been made in respect to the coupling of different 

codes:  

1. A direct coupling of MUSICO with Alya and PAK will remain a big challenge, given the multi-scale 

nature of the two different codes, therefore the approach to such challenge will be to create a 

reduced version of MUSICO that can capture the required myofilament dynamics, using the 

parameterisation of a single run of MUSICO.   

2. The desired coupling method remains in discussions, namely, where each code will reside and the 

communication protocols between them. 

Alya has two different excitation-contraction-coupling models already implemented, namely the 

model published by Hunter et al. [1], and the one published by Land et al. in [2].  The relevance of 

this, simply resides on the already-existing ability to create tightly coupled simulations of electro-

mechanics of the ventricles in highly efficient, manner using high performance computing resources.  

The work performed to upgrade the finite element simulations using Alya within the initial months of 

the project included the programming of appropriate boundary conditions, since one of the most 

important aspects of biomechanic simulations are the setup of the appropriate boundary conditions 

required. Mechanic simulations are highly dependent on the boundary conditions. They determine 

the overall motion of the heart.  The most important boundary conditions are: 

Pericardium:  
It modulates the ventricular motion. The pericardial boundary condition within our simulations is 
represented as dashpots throughout the ventricular walls.  The existence of the atria and great 
vessels generally produce better results regarding the mechanical boundary conditions because the 
furthest we constrain the motion, the less artificial effects are seen in the heart, however this is 
generally non feasible to acquire from clinical MRI protocols. 
Hemodynamic boundary conditions:  
The heart exerts it’s motion against the flow of blood through the arteries, therefore appropriate 
hemodynamic boundary conditions are necessary to reproduce a physiological heart function.  A 
ventricular pressure curve can be used as a boundary condition to the overall mechanics problem, on 
an uni-directional boundary condition approach to model a heart beat. This technique will rely on a 
non-invasive approach for the estimation of intraventricular pressure both for RV and LV, which is 
not plausible to obtain from patients.  In any case an arterial hemodynamics model is required, either 
0D or 1D that has to be parameterised for each ventricle.   
We are currently implementing a 1D model of arterial circulation within our code, Alya to provide the 
appropriate patient-specific boundary conditions required by the mechanics model. 
Future work involves the coupling of the reduced MUSICO model to Alya, the validation of heart full 

organ simulations along with the appropriate hemodynamic boundary conditions to the patient-

specific data.   
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In these initial months of the project, the main upgrade of the PAK software is based on the original 

formulation of the Composite smeared finite element model (CSFEM) [3-6] and its generalization to 

include electrophysiology and ionic transport in biological tissue [7]. Cell internal ionic transport is 

calculated uses the smeared concept for physical fields, while the Ionic cell membrane currents and 

Ca+ concentration is based on the framework given in [8,9]. A 1D FE element model for Purkinje 

network in heart ventricles is implemented, while the smeared formulation and accuracy of the 

CSFEM is currently tested and verified on 2D examples of small samples of the heart wall tissue. As in 

Alya, the PAK software is upgraded with the model for coupling of electrophysiology and muscle 

mechanics according to Hunter et al. [1]. The in-house interface software CAD for pre- and post-

processing is upgraded to facilitate all new features listed above. 

 

We are using Alya and PAK in parallel due the following reasons: 

- Two groups of developers of computational methods and software have been working over 

decades with internationally recognized achievements. 

- Alya and PAK have their own specificities (Alya has been used for heart modeling with 

original and verified procedures; while, recently developed smeared models implemented in 

PAK offer a new concept of modeling electrophysiology, drug transport and 

electromechanical coupling). 

- The models implemented in Alya and PAK will be compared with respect to produced results, 

which will be important for verification of accuracy and ultimate implementation in clinics. 

  



D5.2 – Software: Upgrade FE simulation 

Page 5 of 81 

Table of Contents 

1. Introduction ................................................................................................................................... 11 

2. Alya ................................................................................................................................................ 12 

2.1. Programming framework ........................................................................................................... 12 

2.2. Modelling pipeline ...................................................................................................................... 14 

2.3. Geometry and spatial discretisation for a fluid-electro-mechanic simulation........................... 15 

2.4. Fibre orientation and cell heterogeneity ................................................................................... 16 

2.5. Diffusion Tensor MRI .................................................................................................................. 16 

2.6. Electrophysiology ....................................................................................................................... 16 

2.6.1. Electrophysiology module in Alya ........................................................................................... 17 

2.6.2. Discretisation ........................................................................................................................... 17 

2.6.3. Electrophysiology model verification ...................................................................................... 18 

2.6.4. Sensitivity analysis of the diffusion coefficient ....................................................................... 20 

2.6.5. Subject-specific control simulations ........................................................................................ 22 

2.6.6. Numerical and experimental description of a heart beat ....................................................... 23 

2.7. Excitation-Contraction-Coupling ................................................................................................ 24 

2.8. Solid Mechanics .......................................................................................................................... 26 

2.9. Boundary Conditions .................................................................................................................. 27 

2.9.1 0D Hemodynamics ................................................................................................................ 27 

2.9.2 1D Arterial network .............................................................................................................. 28 

2.9.2.1 1D Coupling strategy ..................................................................................................... 29 

2.9.3 Pericardium .......................................................................................................................... 30 

2.9.4 Sensitivity analysis of mechanical parameters on physiologically-relevant biomarkers ..... 31 

2.10. Computational Fluid Mechanics ............................................................................................... 32 

2.10.1 Intraventricular CFD ........................................................................................................... 32 

2.10.2 Fluid structure interaction ............................................................................................. 33 

3. PAK ................................................................................................................................................ 37 

3.1 Electrophysiology module in PAK .......................................................................................... 37 

3.1.1 A summary of the fundamental equations for gradient-driven physical processes and 

FE formulation ............................................................................................................................... 37 

3.1.1.1 Fundamental equations for the gradient driven field problems ................................... 37 

3.1.1.2 Finite element formulation ........................................................................................... 39 

3.1.2 Smeared model for field problems ................................................................................ 40 

3.1.3 Smeared model for electrical field ................................................................................ 43 

3.1.4 Smeared model for ionic transport ............................................................................... 45 



D5.2 – Software: Upgrade FE simulation 

Page 6 of 81 

3.1.5 Discussion – reference to other computational models ............................................... 47 

3.1.6 Membrane currents according IORD model ................................................................. 49 

3.1.7 Numerical examples ...................................................................................................... 50 

3.1.7.1 A tissue domain with electrical potential gradient ....................................................... 50 

3.1.7.2 A tissue domain with cells and organelles .................................................................... 51 

3.1.7.3 Model with coupled diffusion of ions and electrical flow ............................................. 57 

3.2 Solid mechanics module in PAK............................................................................................. 59 

3.2.1 Coupling electrophysiology and muscle mechanics ...................................................... 59 

3.2.2 Example: Electrophysiological and mechanical model of the heart wall ...................... 59 

4. Linking Alya and PAK to subject specific data ............................................................................... 64 

5. FEA solvers in SILICOFCM platform ............................................................................................... 65 

6. Deviation from the work plan ....................................................................................................... 66 

7. Conclusions .................................................................................................................................... 67 

8. Appendix: Aditional details about PAK .......................................................................................... 68 

8.1 FE model of electric conduction in nerves based on the cable theory, formulation of the 

composite cable finite element (CCFE) ............................................................................................. 68 

8.2 Computation of the ionic currents through cell membranes ............................................... 72 

9. References ..................................................................................................................................... 74 

  



D5.2 – Software: Upgrade FE simulation 

Page 7 of 81 

List of Figures 

Fig. 1. A three physics problem. ..................................................................................................... 12 

Fig. 2. Alya Framework. Scheme of the multi-code implementation solving the EP and CSM in one 

Alya instance and another instance solving the ALE and CFD problems in another mesh. .................. 13 

Fig. 3. Physical sub-problems. Ωa and Ωb in contact with the interface surface Γc. Each physical 

sub-problem is subdivided in three computational sub-domains. To be efficient in parallel, 

communications for the contact surface Γc between the sub-problems must be carefully designed. 14 

Fig. 4. Modelling pipeline. From pre-processing, simulation and post-processing for a fluid-

electro-mechanic case including the software employed at each stage. ............................................. 14 

Fig. 5. A) Heart geometry for a fluid-electro-mechanic model. Complete geometry of the original 

Zygote human heart model [16]. B) Volumetric mesh for simulations with the rule-based fiber 

orientations. .......................................................................................................................................... 15 

Fig. 6. Left: Fibre [27] and cell distributions from endocardium to epicardium. Center:  DTI fibre 

orientations of an ex-vivo experimental study. Right: Rule-based fibres on the same ex-vivo 

experimental geometry. ........................................................................................................................ 16 

Fig. 7. Electrophysiological model verification. Scheme of the simulation domain. The stimulus 

applied was in the partial sphere S. Modified from (35)....................................................................... 18 

Fig. 8. Electrophysiological model verification. Activation time vs distance along the diagonal. A 

time discretization of Δt = 0.05 s and Δx defined by the refinements (div1, div2, div3) applied to the 

original mesh (div0). The curves corresponding to div2 and div3 were coincident. ............................. 19 

Fig. 9. Electrophysiological model verification. Activation time of the four simulations of the 

original mesh and one (div1), two (div2) or three times (div3) refined, the isochrones or the 

activation times are plotted every 0.02 s. ............................................................................................. 20 

Fig. 10. Sensitivity analysis to diffusion. Transversal and longitudinal velocities change with the 

transverse and longitudinal diffusion coefficient respectively. ............................................................ 22 

Fig. 11. Control case. Epicardial activatiom map geometry and the simulation including DTI fibres. 

For a local activation time of 0.071 s, the differences on the simulation case were due to geometrical 

details. 23 

Fig. 12. Control case. Activation maps including isochrones of the epicardium and the 

endocardium from experimental and simulation data ......................................................................... 24 

Fig. 13. Dimensionally heterogeneous model of the cardiovascular system. The scheme shows 

how the 1D arterial network model is coupled with the fluid-electro mechanical model. In this black-

box approach the arterial model is only connected with the CFD problem. ........................................ 29 

Fig. 14. Scheme of the model used in the first numerical test. A 3D cylinder was solved with Alya 

and a 1D cylinder was solved with ADAN. ............................................................................................. 29 

Fig. 15. Effect of pericardium boundary condition in a bi-ventricular geometry. Normalized 

electrical depolarisation is shown as a reference for the reader (A).  The following three plots show 

overall (B), basal (C) and apical (D) longitudinal strain, respectively.  Then (E), snapshots at maximum 

contraction for the three boundary conditions are shown.  From left to right:  Free(F), Based fixed (T) 

, and sliding pericardium (SP).  Finally (F), the longitudinal strain is shown in the AHA plot segment-

wise for each case. ................................................................................................................................ 31 

Fig. 16. Analysis of a healthy systole. Detail of the ventricular electrical depolarization, 

deformation and fluid dynamics. .......................................................................................................... 34 

Fig. 17. Analysis of a healthy systole. Image sequence similar to Figure 31 but using Q-criterion 

isosurfaces at 50[s-2]. Observe that the scale of the velocity module goes up to 20[cm/s]. .............. 34 



D5.2 – Software: Upgrade FE simulation 

Page 8 of 81 

Fig. 18. Analysis of a healthy systole. Image sequence for the aorta showing the co-planar aortic 

arch output, the brachiocephalic output and the left common carotid artery output. Arrows and 

colors represents velocity. A short axis view for the aortic root is also shown. In this last view the 

helical pattern in the aortic root is clearly seen. ................................................................................... 35 

Fig. 19. Simulation of a healthy systole. Left: MRI 4D flow image taken from [103]. Right: 

simulation results with the whole heart model. ................................................................................... 36 

Fig. 20. Schematic of detailed model and smeared model. a) Detailed model of tissue as composite 

medium with continuum subdomains and capillaries/fibers, 2D representation, with continuum, 1D 

and connectivity elements; b) Smeared FE representation of the detailed model; c) Composite 

smeared finite element (CSFE) with subdomains and connectivity element at a FE node J. ............... 41 

Fig. 21. Schematic of nerve fibers and cells. a) Dendritic tree and 1D finite elements along the 

fibers with connectivity elements 1,2; b) Cell with current  IV  through membrane due to potential 

difference membrane, and ionic current  Iion due to molecule flow modeled by connectivity 

elements 1,2. ......................................................................................................................................... 43 

Fig. 22. A square tissue domain (10x10 mm) with network of nerves (in red) connected with tissue. 

Prescribed constant electrical potential at the two boundaries. .......................................................... 50 

Fig. 23. Mean potential in nerve fibers (left panel) and in tissue (right panel) evolution over time. 

Prescribed potential in fibers at boundary (Fig. 22). ............................................................................. 51 

Fig. 24. A tissue domain of size (50 x 50 μm) with cells and nerve fibers (N1 to N6) normal to the 

plane. Detailed model with 2D elements (left panel) and smeared model (right panel). .................... 52 

Fig. 25. Fields of electrical potential in case of constant potential of 0.08V within nerve fibers. 

Three time points (t = 0.001, 0.002 and 0.005s) and several domains, detailed and smeared model 

(extracellular space, cytosols of cell 1 and cell 2, and organell of cell 2). ............................................. 53 

Fig. 26. Evolution of the mean potential in case of constant potential of 0.08V within nerve fibers. 

Four domains, detailed and smeared model. ....................................................................................... 54 

Fig. 27. A bolus-type prescribed electric potential in nerve fibers .................................................. 54 

Fig. 28. Electric potential vs. time for detailed and smeared model within different domains for 

bolus function in Fig. 20 within fibers. .................................................................................................. 55 

Fig. 29. Electrical waveform within Purkinje fibers of the heart [15] ............................................... 55 

Fig. 30. Fields of electrical potential in case of ionic currents of potassium and sodium included; 

detailed model – upper panel, smeared model –lower panel. ............................................................. 56 

Fig. 31. Evolution of the mean potential in extracellular space and cells, with ionic currents of 

potassium and sodium included. Solutions for detailed and smeared model 

are practicaly the same. ........................................................................................................................ 56 

Fig. 32. Detailed and smeared model for coupled electrical flow and ionic diffusion. .................... 57 

Fig. 33. Concentration (left panel) and electrical potential fields (right panel) at time t=1s, coupled 

diffusion and electrical flow, detailed model. ....................................................................................... 58 

Fig. 34. Mean concentration vs. time for coupled problem, detailed and smeared model solutions, 

within extracellular space (left panel) and cytosol of cell type 1 (right panel). .................................... 58 

Fig. 35. Mean electrical potential vs. time for coupled problem, detailed and smeared model 

solutions, within extracellular space (left panel) and cytosol of cell type 1 (right panel). ................... 58 

Fig. 36. Small domain of heart wall tissue taken from [65] (left panel), and first layer of muscle 

cells close to sub-endocardium with mesh of Purkinje fibers projected on it (right panel). ................ 60 

Fig. 37. a) The detailed heart wall model with cells and a network of Purkinje fibers; b) Smeared 

model with tissue and Purkinje fibers associated to nodes of the CSFEs in a smeared manner. ......... 60 

Fig. 38. a) Change of electric potential over time in extracellular space (tissue) domain - detailed 

and smeared model, with prescribed Ve(t) at inlet nodes of Purkinje fibers and prescribed Ve = -20V 



D5.2 – Software: Upgrade FE simulation 

Page 9 of 81 

within cells (green). b) Change of mean current density Ica [µA/µm2] which affects transport of Ca2+ 

through cell membrane, according to detailed and smeared model. .................................................. 61 

Fig. 39. a) Concentration change of Ca2+ in cells due to cell membrane currents. b) Mean 

contraction (displacement) of the right vertical boundary of heart tissue segment, due to Ca2+ change 

in muscle cells. ....................................................................................................................................... 61 

Fig. 40. Effective contractions (displacements) according to the detailed model (left panel) and 

smeared model (right panel) for four time points (0.4, 0.9, 1.0 and 1.1s) of first cycle of action 

potential function (inlet Ve(t) in Fig. 35a). ............................................................................................ 62 

Fig. 41. Electric potential according to detailed model (left panel) and extracellular space of 

smeared model (right panel) for four time moments (0.4, 0.9, 1.0 and 1.1s) of the first cycle of action 

potential function. ................................................................................................................................. 63 

Fig. 42. Finite element muscle model............................................................................................... 64 

 

 

List of Tables 

Table 1. Cell model initial conditions .................................................................................................... 18 
Table 2. Mesh characteristics ................................................................................................................ 19 
Table 3. Conduction Velocity dependent on the element size and Δt .................................................. 20 
Table 4. Velocities along the slab diagonal and the longitudinal and transversal direction to fibres to 

evaluate mesh convergence.Taking as a reference the velocities ........................................................ 21 
Table 5. Wave Velocity of different diffusions ...................................................................................... 21 
 

  



D5.2 – Software: Upgrade FE simulation 

Page 10 of 81 

List of Abbreviations 

 

Abbreviation Explanation 

API application program interface 

B.C. boundary conditions 

REST representational state transfer 

HPC high performance computing 

EP electrophysiology 

CSM computational solid mechanics 

CFD computational fluid mechanics 

FEM finite element method 

FSI fluid structure interaction 

PDEs partial differential equations 

DTI diffusion tensor imaging 

CAD computer aided design 

ODE ordinary differential equation 

CSFE composite smeared finite element 

CCFE composite cable finite element 

 
 
 

  



D5.2 – Software: Upgrade FE simulation 

Page 11 of 81 

1. Introduction 

Although experimental research is essential to improve diagnosis and treatment techniques, 
computational tools are gradually gaining importance. Biomechanical simulations provide a powerful 
tool to understand heart function and its behaviour under congenital and acquired pathologies. 
Besides this, and as happens in other disciplines, simulations can become a key tool in designing 
surgical procedures, techniques, or devices. However, modelling the beating heart and its pumping 
action is a highly complex task. Cardiac function involves a considerable range of spatial scales and 
different tightly coupled multi-physics problems.  Several orders of magnitude are linked, from the 
microscopic cell arrangement into a volumetric arrangement, to the macroscopic shape of the 
cardiac chambers. Also, different types of physical problems are involved. In the muscle, the 
electrical stimuli propagates through the cardiac myocytes causing the cardiac muscle contraction, 
which in turn exerts work upon the blood inside the cavities. Therefore, from the computational 
mechanics standpoint, the heartbeat is a tightly coupled fluid-electro-mechanical problem. 
 
Within the next parts of the deliverable, a full description of the fluid-electro-mechanical problem of 
the cardiac function will be described, along with the upgrades and developments of the last year on 
the software Alya, the in-house tool employed by BSC.  
 
A detailed description of upgrades and developments in software PAK, the in-house tool developed 
by BioIRC, will be also provided below. 
 
Two main studies to create patient-specific applications scenarios have been developed: 
 
1.  Multi-modal ventricular tachycardia analysis: Towards the accurate parameterisation of predictive 

high performance computing (HPC) electrophysiological computational models. 
2. Fluid-electro-mechanical simulations of the human heart using supercomputers. 
 
These patient-specific studies will be described in the following parts of this deliverable, with the 
specific connection towards the upgrading of finite element computer simulations to create accurate 
simulations for clinical requirements for hypertrophic cardiomyopathy, patient-specific scenarios. 
Some of this work includes the verification of the Code Alya for each physics problem involved.    
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2. Alya 

Alya is the Barcelona supercomputing center (BSC) in-house tool used in this project to solve cardiac 

electro-mechanics models. This software is designed from scratch to run efficiently in high 

performance computers, with a tested scalability up to 100.000 cores [10, 11, 12, 13, 14]. 

The code is programmed in a modular way, with a kernel in charge of generic input/output 

subroutines, solvers, mathematical functions and services like parallelisation or other 

complementary tools. Then, there are several modules, allowing to solve a wide range of coupled 

problems such as radiation, compressible and incompressible fluids, excitable media and solid 

mechanics. The software is written in Fortran 90/95. The time dependent partial differential 

equations (PDEs) are solved using, mainly, finite element method (FEM), but finite volumes can also 

be used for some problems. The platform is designed to be multiphysics and flexible for coding and 

running in high performance computing (HPC) machines. 

To model the heart, the problem is divided into three main coupled physics: electrophysiology, solid  

mechanics and fluid dynamics as shown in Figure 1. 

 

Fig. 1. A three physics problem.  

 
The system can be decomposed in two bidirectionally coupled problems: the electro-mechanical and 

the fluid- mechanical one. These two problems can be decomposed in sub-problems leading to three 

systems of equations to solve: electrophysiology, solid mechanics, and fluid mechanics in deformable 

mesh. 

2.1. Programming framework 

Alya is prepared to run in a multi-code environment. With a built-in library, our simulation tool can 
be coupled with other modelling software, or with other(s) Alya instance(s). Generally a multi-code 
approach is used. Two Alya instances are coupled to solve the fluid-electro-mechanical model, 
splitting the whole domain in two parts: the fluid sub-problem (blood) and the solid sub-problem 
(tissue). Each part is solved in one of the instances of the code. Each instance works in a sandbox 
manner, being completely independent from the other, with their own input configuration and mesh 
files. Both instances communicates with a black-box approach, knowing only the coupling points and 
the variables to be transferred. This approach is the one that will be employed with the reduced 
MUSICO software to be coupled within SILICOFCM. 
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The fluid-electro-mechanical problem is solved in a multi-code approach. The most integrative cases 
solved up until now are the fluid-electromechanical cases. As said before, this multiphysics problem 
can be naturally decomposed in two sub-problems: solid and fluid. Using the multi-code approach 
available in the simulation tool, we can distribute the involved physics, depending on the sub-
problem where they are being solved. With this approach, the solid domain runs in one Alya 
instance, computing the electrophysiology (EP) model and the computational solid mechanics (CSM) 
equations under the same mesh. The fluid domain runs in another instance of Alya computing the 
ALE deformable domain and the computational fluid dynamics (CFD) (detailed in Section 5) problem, 
in another mesh. Both codes communicate through a set of integrated adhoc Message Passing 
Interface (MPI) subroutines in specific coupling points. 

 
Fig. 2. Alya Framework. Scheme of the multi-code implementation solving the EP and CSM in one Alya instance and another instance 

solving the ALE and CFD problems in another mesh. 

 

This coupled multi-physics problem is then solved in a staggered way. Each Alya instance solves two 
problems: on one side, electrophysiology and tissue mechanics; and on the other side, fluid 
mechanics and mesh deformation. In turn and for each iteration, each of the four physical problems 
is solved independently. This strategy has its benefits and drawbacks. Among the benefits is its 
flexibility, because each physical problem can be programmed independently of the other, with 
smaller problem matrices and its own best-suited solution strategy, allowing to solve the problems in 
a standalone way if required or adding more and more problems to solve. The drawback is that the 
coupling strategy must be robust and efficient enough to take real profit of the advantages. The 
efficiency issue is important not only from the algorithmic viewpoint but also from the parallel 
implementation one, especially when the two instances are coupled. In this work we show at what 
extent these drawbacks are overcame. 
 
Domain partition and communication points:  Both of the multicode approach sub-problems are 
potentially very large, requiring in turn parallel runs. Each sub-problem is then partitioned using a 
mesh partitioner such as METIS [15] and distributed to many MPI parallel threads, every thread with 
its corresponding sub-domain. If both sub-problems are parallelized, then an efficient MPI point-to-
point communication scheme is required for the interface surface 𝛤𝑐, 
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Fig. 3. Physical sub-problems. 𝛺𝑎 and 𝛺𝑏 in contact with the interface surface 𝛤𝑐. Each physical sub-problem is subdivided in three 
computational sub-domains. To be efficient in parallel, communications for the contact surface 𝛤𝑐 between the sub-problems must be 

carefully designed.  

2.2. Modelling pipeline 

The pipeline used to obtain the fluid-electro-mechanic simulations is shown in Figure 4.   

 
Fig. 4. Modelling pipeline. From pre-processing, simulation and post-processing for a fluid-electro-mechanic case including the software 

employed at each stage. 

 
As a first step, an initial CAD geometry is modified, and the mesh is created with a pre-processing 
software. Then, the fibre and cell distribution are computed through a rule-based method, and the 
boundary conditions (B.C.) are imposed for each physics problem. After, each one of the problems is 
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incrementally added to the model, starting with EP, following with CSM and finishing with the 
coupled Fluid-Structure Interaction (FSI) problem that includes the CFD formulation. Once each 
physics problem is added, the simulations results are analysed to look for convergence problems and 
physical consistency with the originally defined problem. The most common encountered issue was 
after including the FSI formulation. Often, the intracavitary space contracts in such a manner that the 
elements of the fluid domain get extremely skewed and the CFD problem can diverge or the 
elements are inverted. In that case, the mesh should be rebuilt taking special care in the conflictive 
region. 

2.3. Geometry and spatial discretisation for a fluid-electro-

mechanic simulation 

The whole heart geometry used to test the fluid-electro-mechanic simulation comes from the 
Zygote Solid 3D heart model [16] shown in Figure 5. 

           
 A)         B) 

Fig. 5. A) Heart geometry for a fluid-electro-mechanic model. Complete geometry of the original Zygote human heart model [16]. B) 
Volumetric mesh for simulations with the rule-based fiber orientations. 

 
To modify the geometry and create the mesh, the commercial ANSA pre-processing software was 
used. This is a very handcrafted job that took several trial and error iterations until the mesh was 
good enough for modelling. The main modifications of the Zygote geometry were: (shown in Figure 
5B). 

•  The non-specific structures were removed (i.e. fat and vessels). 

•  The valvular leaflets were removed, closing the space with a plane surface in the atrioventricular 
case. 

•  The geometry surfaces were modified to make them fit between each other. 

• The atria was filled with an isotropic lineal solid material, with a density of  𝜌= 1.04 (g/cm3), a 
young modulus of E = 5 [Ba] and a Poisson ratio of  𝜈= 0.0005. This allows a physiological dynamic 
of the structure without modelling the atrial inner fluid dynamics. 

•  The inner surface of the endocardium were smoothed to reduce possible mesh inverting problems 
in the fluid mesh. 

•  The inner cavities volumes were created. 
 
Spatial discretisation: The most common approach so far has been to use [17, 18, 19, 20] different 
meshes to simulate electrophysiology and solid mechanics, even though they are virtually the same 
domain. This approach is generally motivated by two reasons. On one hand, is generally observed 
that while the electrophysiology problem is eventually well parallelised, solid mechanics is not. On 
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the other hand, it is generally stressed that electrophysiology needs a finer mesh definition that solid 
mechanics. It is worth to remark that the use of different mesh sizes do not represent a problem per 
se (it is well known that solving in different mesh sizes and interpolating fields can arise stability 
problems). However, Alya is highly efficient to solve in parallel all of its programmed models. 
Therefore, we use the same mesh for the electrical and the solid mechanical problems. For this work, 
an average element size of 250 [m] is used. Both meshes are enforced to have matching nodes in the 
contact boundary, therefore the fluid domain mesh results almost as fine as the solid mesh. 

2.4. Fibre orientation and cell heterogeneity 

Fibre and cell distribution are critical for the electrical depolarisation and mechanical deformation of 
the myocardium. The fibre distribution can be experimentally recovered from animal or ex-vivo 
organs with diffusion tensor imaging magnetic resonance (DTI) [21, 22], allowing to have fibre 
distribution from biological tissues. This technique measures water molecules diffusion to reveal 
microscopic detail about fibre architecture. Currently, obtaining DTI measurements from clinical data 
is challenging, therefore fibre distribution can be also generated with rule-based methods [23, 24, 
25, 26, 27]. These techniques find the relative position for each node in the domain with respect to 
the endocardium and the epicardium and assigns a fibre direction and cell tag. This is the state of the 
art methodology when DTI information is unavailable. 

 
 

Fig. 6. Left: Fibre [27] and cell distributions from endocardium to epicardium. Center:  DTI fibre orientations of an ex-vivo experimental 
study. Right: Rule-based fibres on the same ex-vivo experimental geometry.  

2.5. Diffusion Tensor MRI 

Diffusion Tensor Imaging (DTI) is an emerging technique for non-invasive reconstruction of the 
cardiac fiber architecture based on water diffusion properties [29,30].  In fact, ex-vivo DTI has been 
proven to be greatly reproducible in the assessment of myocardial microstructure [29, 30, 31, 32] as 
shown in Figure 6, whereas in-vivo implementation remains a challenge affected by technical 
difficulties, including intrinsic motion and poor resolution [33].  In-vivo limitations to integrate fiber 
organization with scar distribution using CMR and further assessment of ventricular arrhythmia risk 
and VT features can be overcome using a well-described pig model of infarct-related VT [28]. 

2.6. Electrophysiology 

Ion channel dynamics are modelled by fitting ODEs to experimentally measured transmembrane 

currents. Today most complex cell models include a wide range of transmembrane ionic currents 

measured in dog [35] or human [36] tissue. These complex models are used to simulate the electrical 

activity of the heart in normal conditions and under complex chaotic depolarisation patterns like re-

entry [37, 38, 39]. 
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Despite cell models are preferred due to the high detail of the transmembrane currents, these are 

more computationally expensive and rely on a large set of parameters difficult to personalise. Due to 

this, phenomenological models are still popular. In this way, the electrophysiological models used 

nowadays can be classified in phenomenological and cell models. An extensive review on 

electrophysiology models can be found in [40]. 

2.6.1.Electrophysiology module in Alya  

Human ventricular electrophysiology biophysically-detailed models and simulations have replicated 
experimental and clinical recordings in a range of healthy and disease conditions, and also under 
drug action. Their maturity has triggered interest and impact beyond academia, such as the adoption 
of the state-of-the-art OHara-Rudy model [36] for industrial and regulatory purposes, within the CiPA 
initiative sponsored by the US Food and Drug Administration. Studies have shown prediction of drug-
induced clinical arrhythmic risk in human with 89% accuracy while data obtained from previously 
conducted animal studies for similar datasets showed up to 75% accuracy [41]. 
Simulation of propagation of electrical excitation was achieved through the monodomain equations 
[42,43] in the form: 

 

    
(1) 

 
 

(2) 

 

(3) 

 
where V is the transmembrane potential, w are the gating variables that regulate the 
transmembrane currents, c are the ionic concentrations inside of the cell, mx is the right-hand side of 
the system of ODEs corresponding to the generic sate variable vector x,X is the surface to volume 
ration, Cm is the membrane capacitance per unit area, Iion ae the ionic currents, and Iapp is the applied 
current triggering the electrical depolarisation acting on specific anatomical locations. The 
orthotropic tensor of local conductivities in the reference configuration is defined as 

 
   (5) 

Where 𝜎𝑓, 𝜎𝑠 and 𝜎𝑛 are, respectively, the conductivities in the fibre, sheet and normal directions. 

These equations describe the membrane kinetics as well as the local transport of ions within cells. 
The human cell model consists of a system of ODEs with 41 state variables, and it exhibits a highly 
stiff behaviour, mainly due to the activation of sodium ionic current, which causes a sudden spike in 
the transmembrane potential V. This is the model that shows closer agreement with experimental 
recordings in a range of conditions and that has been adopted as the basis for the CiPA initiative for 
drug assessment, sponsored by the Food and Drug Association (FDA). 
 

2.6.2. Discretisation 

The linear diffusive terms can be integrated by parts using either open or closed rules. Closed 
integration is used in the ionic current term Iion(𝜙) to preserve the nodal character. This strategy 
used for the non-linear part produces a trivially invertible diagonal mass matrix. The discrete 
equations are solved using a first order Yanenko operator splitting where the Cell Model is explicitly 
solved using a Forward Euler scheme and the Tissue Model is solved implicitly with either a Backward 
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Euler or a Crank-Nicolson scheme. From numerical experiments we observed that as the main critical 
time limitation comes from the Tissue Model, the proposed scheme is both efficient and accurate 
enough. 

2.6.3.Electrophysiology model verification 

Numerical verification is essential to know if the model is correctly implemented in our code. For 
electrophysiological models, the main verification test was published by Niederer et al [44]. Mesh 
convergence of electrophysiological models was evaluated by multiple codes with the N-version 
verification test proposed in [44]. We have replicated the test, using the same geometry, boundary 
conditions and mesh, but using the O’Hara-Rudy cell model [36]. Results were compared against the 
presented in the cited publication. 
The slab described in Figure 7 was employed to create the computational mesh. A mesh subdivision 
was employed to refine the grid and perform a mesh convergence test. On the refinement, each 
tetrahedral element of the original mesh is divided into eight subtetrahedrons. When the mesh was 
refined ones we denote the new mesh by div1. In the case that the refinement algorithm was applied 
two or three times, the resulting meshes were denoted by div2 or div3, respectively. We employed a 
monodomain O’hara-Rudy cell model instead of the original the ten-Tusscher [35] model used in the 
test. A sensitivity analysis of the model to the spatial and the time discretization was performed. 
 

 
 

Fig. 7. Electrophysiological model verification. Scheme of the simulation domain. The stimulus applied was in the partial sphere S. 
Modified from (35). 

 
Longitudinal fibre orientation was defined in the long axis of the slab direction. All boundaries had 
zero-flux condition. A stimulus of -50 mV was imposed during 2 ms on the slab corner of point (0; 0; 
0) for the O’Hara- Ruddy model. A cycle length of 857 ms was imposed and the diffusion longitudinal 
and transversal were defined as 0.0009529 and 0.000125757 (cm2/s), respectively. The cell model 
initial variables are described in Table 1. 
 
Table 1. Cell model initial conditions 
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The electrical depolarisation velocity was measured along the major diagonal of the slab, from the 
stimulation corner to the opposite one (Figure 7). Plotting the activation time as a function of the 
distance on the diagonal, shows a curve which has a slope equal to the inverse of the propagation 
velocity. The time discretisation employed on the analysis were 𝛥t = 0.05, 0.01 and 0.005 ms. In the 
case of spatial discretisation, for each 𝛥t several 𝛥x are described in Table 2. 
 
Table 2. Mesh characteristics 

 
 
 
 

 
 

Fig. 8. Electrophysiological model verification. Activation time vs distance along the diagonal. A time discretization of 𝛥t = 0.05 s and 𝛥x 
defined by the refinements (div1, div2, div3) applied to the original mesh (div0). The curves corresponding to div2 and div3 were 

coincident. 

 
The results are comparable to those presented in [44]. In meshes with larger elements, the wave 
velocity is slower. If we refine the mesh, the curves showed on Figure 8 converge. Moreover, the 
curves from simulations using div2 and div3 meshes are almost identical and the activation patterns 
are also similar (Figure 7.3). The corresponding to simulations on the meshes where divisor was 
applied 2 and 3 time are almost identical. The corresponding wavefront velocities are 26.936 cm/s 
and 27.262 cm/s, for div2 and div3 respectively (Table 7.3). This means that for volumetric elements 
equal or smaller than 3.176𝑥10−7  the results were converged at 𝛥 t = 0.05. The electrical 
depolarisation patterns are equal for elements smaller than this value. 
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Fig. 9. Electrophysiological model verification. Activation time of the four simulations of the original mesh and one (div1), two (div2) or 
three times (div3) refined, the isochrones or the activation times are plotted every 0.02 s.  

 
Time convergence.  We have run the simulations employed at three different time discretizations of 

the meshes and refinements described above up div2, where mesh was converged. The variations on 

the time step size 𝛥t did not substantially affect the conduction velocity. 

Table 3. Conduction Velocity dependent on the element size and 𝛥𝑡 

 

2.6.4. Sensitivity analysis of the diffusion coefficient 

The electrophysiological models depend on several parameters, which include diffusion, that cannot 
directly be extracted from experimental data. The diffusion tensor D was defined as a 3x3 diagonal 
matrix. Values on the diagonal correspond to the fibres longitudinal, normal and sheet plane 
diffusion. We considered a transversely isotropic material medium and we assumed that the normal 
and sheet plane diffusion are the same. We define a longitudinal fibres diffusion Dl and a transversal 
to fibres diffusion Dt. The diffusion is related to the depolarisation wave velocity. We aim to describe 
how variations in the diffusion affect the propagation velocity. To do so, we have performed a 
sensitivity analysis of the model to the diffusion parameters and after we have quantified the 
velocity changes. The objective is to be able to approximate diffusion values based on the 
depolarisation velocity given by  electro-anatomic activation maps. 
The slab, employed on the test verification in Section 3.3, was also chosen to perform the diffusion 
sensitivity analysis. We imposed a uniform time discretization of 𝛥t = 0.05 ms and several spatial 
discretization 𝛥x were evaluated refining the mesh. 
The cell model employed was an adaptation of the O’Hara-Rudy model for pig tissue. The main 
difference on the swine model was the elimination of the transient outward K+ current (Ito), in pigs 
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this currents is inexistent. To define the cell model initial variables at the desirable cycle length of 
400 ms, a cell simulation was previously run in Matlab. The O’Hara-Rudy without Ito was employed 
to run the cell simulation where a stimulus was imposed every 400 ms and the cell model was run up 
to a steady state, 1000 ms. The resulting cell currents were saved and incorporated to the tissue 
simulations as initial variables. We made the assumption that there was a cellular homogeneity and 
all the cells were considered as endocardial cells. 
On the slab simulation the cycle length was defined at 400 ms, the same as on the experimental 
electrophysiological procedure. The diffusion Dl and Dt were set to 0.001171 and 0.00039033, 
respectively. First, a mesh convergence was performed. We have evaluated the wave velocity in the 
diagonal vd, longitudinal vl and transversal vt direction. The velocities along the slab diagonal were 
calculated as in the verification test described in Section 3.3. The propagation velocity along the 
longitudinal fibre direction coincides with the long direction of the slab and defines the maximum 
propagation velocity. In the case of the transversal direction, it is coincident with the velocity in the 
direction the small edges of the slab and defines the minimum propagation velocity. The maximum 
and the minimum propagation velocities were calculated by plotting the activation time along the 
longitudinal and transversal fibre direction, respectively. The velocities calculated on the mesh 
convergence analysis of this problems are summarised in Table 3. 
 
Table 4. Velocities along the slab diagonal and the longitudinal and transversal direction to fibres to 
evaluate mesh convergence.Taking as a reference the velocities. 

 
 

 
Table 4 shows the results of the simulations using different values of diffusion. The references values 
for Dl and Dt were the ones employed on the mesh convergence performed during the problem 
definition of this section. This reference diffusion were multiplied by a range of values from 1 to 20 
times in the slab simulations for the sensitivity test. Three different spatial discretisations were 
employed for each diffusion set. 
The results from the different simulations are summarised in Table 5 and Figure 10. The longitudinal 
and transverse propagation velocities obtained on meshes where the divisor was applied once or 
twice were comparable. Also, it was observed that the ratio between the longitudinal and transversal 
velocities was approximately 2 in all cases. 
 
Table 5. Wave Velocity of different diffusions. 
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Fig. 10. Sensitivity analysis to diffusion. Transversal and longitudinal velocities change with the transverse and longitudinal diffusion 

coefficient respectively. 

 
We have described how propagation velocity change with the diffusion coefficient for an 
experimental pig cell model parameterisation. The main application of these results is that if we 
know a priori the conduction velocity desirable for our computational model, we can employ the 
curves in Figure 10 to approximate the diffusion parameters required to run electrophysiological 
simulations. This is useful to reduce the parameterisation process on complex geometries that run 
under the same cell model conditions as required. 

2.6.5. Subject-specific control simulations  

The biventricular electrophysiological simulations were run to evaluate their capabilities when 
reproducing the beat of a healthy pig heart. The results were compared against experimental data 
from a control subject. The computational scenario was built based on the experimental data of one 
of the control cases. In general, cardiac electrophysiological simulation must include a Purkinje 
activation system in the model. However, the experimental scenario that we want to simulate 
includes pacing, so the electrical activation begins in the catheter tissue interface. As a consequence, 
and assuming that Purkinje network cannot be retrogradely activated by the pacing stimulus, we can 
neglect the Purkinje network for our simulation during pacing. The cell model properties were equal 
to the ones imposed on the diffusion sensitivity analysis in the slab (Section 3.4). Based on 
mentioned diffusion analysis, the following diffusion coefficients were chosen: 0.0231858 cm2/s for 
the longitudinal diffusion and 0.007728534 cm2/s for the longitudinal diffusion to obtain the 
desirable propagation velocity. The computational mesh was built from segmented CMR images 
obtained from an experimental protocol of monomorphic ventricular tachycardia in the pig. 
The simulation mesh had an average element volume of 2.7055 x10-5 cm3. This element size 
is comparable with the one of the original slab mesh (2.032x10-5 cm3). To ensure that the simulation 
results are accurate, we applied the divisor once. A subdivision technique was used to obtain a 
53.530.448 elements mesh with an averaged elements volume of 3.3819x  10-6 cm3, similar to 
element side length of the div1, slab mesh (2.540 x10-6 cm2). 
The following simulations were run on the refined mesh composed by 53 millions of elements. On 
this mesh, 10000 times steps were needed to run simulation of 500 ms in 196 cores, with a total 
calculation time of 30 minutes.In this section we have first performed two  type of simulations: one 
including DTI fibre orientation and another including synthetic fibre orientation described by a 
mathematical rule-based model. Both simulations were compared against the activation maps from 
the experimental protocol. The main objective was to evaluate the power of simulations when 
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reproducing the beats of a healthy heart and describe the sensitivity of the model to the fibre 
distribution. Then, we have introduced two types of cells, endocardial and epicardial cells, on the 
model with DTI fibre orientation. We have evaluated the action potential in both types of cells and 
we have performed a S1S2 protocol to calculate the electrical restitution curves and compare them 
against the experimental ones. The main objective was to evaluate the cell model and compare it 
with the experimental data and build a reference case for future parameterisation of the cell 
properties on the model. 

2.6.6. Numerical and experimental description of a heart beat 

A cardiac beat starting with an external stimulus on a point in the RV endocardium was created using 
computational models including different fibre orientations (DTI and synthetic) to be compared to 
experimental activation maps. The activation time described the moment in which the activation 
wave pass through each node of the myocardium. The activation times, its gradients and the 
wavefront propagation velocity were calculated and compared. These comparisons between 
experimental and numerical data were done to analyse the accuracy of the computational models, as 
a first step towards validation of computational models. 
Total activation time of the simulation with DTI fibres is similar to experimental data and larger than 
the simulation with synthetic fibres. The total activation time on the two computational models are 
different. The one resulting from the simulation including DTI fibres is 83.85 ms and 105.55 ms in the 
case of the simulation including rule-based fibres. 
In the case of the experimental activation maps of the control case, the total activation time is 71.9 
ms; closer to the one of the simulation using DTI fibres. The total activation time differences between 
the experimental and computational models, including both rule-based and DTI fibre orientations, 
are mostly due to differences of the basal geometry as shown in Figure 11. At 71 ms (the total 
activation time for experimental DTI data), the epicardium is almost completely activated in the 
simulation (Figure 11). The areas of the computational model that take longer to be activated, are 
marked in grey in the figure; which correspond to areas of geometrical differences. These differences 
exist because the accuracy of the ex vivo CMR imaging tool is larger than electrophysiological 
experimental studies.  

 
 

Fig. 11. Control case. Epicardial activatiom map geometry and the simulation including DTI fibres. For a local activation time of 0.071 s, the 
differences on the simulation case were due to geometrical details. 
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The fact that the depolarisation is slower in the simulation of the rule-based fibres is related with the 
different activation patterns (Figure 12). 

 
 

Fig. 12. Control case. Activation maps including isochrones of the epicardium and the endocardium from experimental and simulation data 

 
Endocardial wavefront velocities are well reproduced. The median experimental conduction 
velocities are: 69.289 cm/s (epicardium), 119.855 cm/s (LV endocardium) and 152.795 cm/s (RV 
endocardium). The same algorithm was applied to the activation maps from electrophysiological 
simulations. We obtained that the median velocity for the simulations including DTI fibres were 
116.870 cm/s in the endocardium and 137.94 cm/s in the epicardium. Similar velocities were found 
in the simulations including synthetic fibres. The median propagation velocity was 100.94 in the 
endocardium and 116.018 in the epicardium. 
It is remarkable that the propagation wavefront is faster in the endocardium for experimental data 
and on the epicardium for computational models. However, velocities in the LV endocardium from 
experimental data and from simulations including DTI fibres were similar. 

2.7. Excitation-Contraction-Coupling 

Bidirectional electro-mechanical models with excitation-contraction-coupling (ECC) are two side 

problem. Electrical activity induces mechanical deformation but, also, mechanical stimulus can also 

induce transmembrane currents that develop in electrical activity. E.g. it has been proven [45] that 

ventricular filling slows down epicardial conduction and increases action potential duration. Also, in 

[46], the authors demonstrate that mechanical deformation could affect complex 

electrophysiological phenomena like spiral wave breakup. This effect, where mechanical stimulus 

induce electrical activity, is called mechano-electric feedback. This is a complex phenomena and only 

a few models exist for such behavior [47, 48, 49]. 
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Recent work in Alya has been able to create a bidirectional excitation contraction coupling using the 

model published by Land et al. [49]  Using this model, a sensitivity analysis was performed to assess 

the effect of mechanical and ECC parameters on physiologically relevant biomarkers. The publication 

is being written and should be published within the next couple of months. A brief description 

follows: 

Coupling of the electrophysiology to the contractile machinery of the cardiomyocytes is represented 

through the human-based model of excitation-contraction coupling and active tension by Land et al. 

[49] The model is based on sets of ODEs describing the local dynamics of a vector of state variables q, 

which represents the contractile mechanisms in cardiomyocytes (see a detailed discussion about 

these models in [48]). The corresponding system of ODEs reads as (note the dependencies on stretch 

and stretch-rate). 

dq

d𝑡
= mq(q,c, 𝜆f, 𝜆

·

f).    (6) 

 

where 𝜆f = √𝐼4f = √f0 ⋅ Cf0 is the stretch in the fibre direction. The Land et al. [49] model consists of 

six state variables q = {𝑆,𝑊,CaTRPN, 𝐵, 𝜁s, 𝜁w} : 𝑆  and 𝑊  are variables associated with the 

crossbridge binding, respectively being the post-powerstroke and pre-powerstroke states, CaTRPN 

represents the fraction of troponin C units with calcium bound to their regulatory binding site, 𝐵 

represents the fraction of blocked myosin binding sites on actin, and the state variables 𝜁w, 𝜁s dictate 

the pre-powerstroke and post-powerstroke distortion in a distortion-decay model.  

The right-hand side terms defining mq in assume the following form 

mq =

(

 
 
 
 
 
 

𝑘ws𝑊− 𝑘su𝑆 − 𝛾su𝑆
𝑘uw(1 − 𝐵 − 𝑆 −𝑊) − 𝑘wu𝑊− 𝑘ws𝑊− 𝛾wu𝑊

𝑘TRPN[(
[Ca2+]int

[Ca2+]T50
)𝑛TRPN(1 − CaTRPN) − CaTRPN]

𝐾uCaTRPN
−
𝑛Tm
2 (1 − 𝐵 − 𝑆 −𝑊) − 𝑘uCaTRPN

𝑛Tm
2 𝐵

𝐴s𝜆
·

f − 𝑐s𝜁s

𝐴w𝜆
·

f − 𝑐w𝜁w )

 
 
 
 
 
 

,    (7) 

 

 

where the state variable-dependent parameters are defined as 

𝛾su = {
𝛾s(−𝜁s − 1) if𝜁s + 1 < 0

𝛾s𝜁s if𝜁s + 1 > 1
0 otherwise

,

𝛾wu = 𝛾w|𝜁w|,

[Ca2+]T50 = [Ca2+]T50
ref + 𝛽1[min(𝜆f, 1.2) − 1].

 (8) 

 

When the solution of the system of ODEs is achieved, the expression for the active tension in the 

fibre direction 𝑇act can be retrieved as 

𝑇act(q, 𝜆f) = ℎ
̂

(𝜆f)
𝑇ref
𝑟s
[(𝜁s + 1)𝑆 + 𝜁𝑤𝑊], (9) 

where 
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ℎ
̂

(𝜆f) = {

0 if𝜆f <
1.87𝛽0 − 1

2𝛽0

1 + 𝛽0(2𝜆f − 1.87) if
1.87𝛽0 − 1

2𝛽0
≤ 𝜆f < 0.87

1 + 𝛽0(𝜆f − 1) if0.87 ≤ 𝜆f < 1.2

1 + 0.2𝛽0 𝜆f ≥ 1.2

 (10) 

and the remaining parameters are constant. 

This system is coupled bidirectionally, and such that it now becomes 

dc

d𝑡
= mc(𝑉,w,c,q). (11) 

Particularly, the calcium bound to troponin needed by the cell electrophysiology model is obtained 

from the excitation-contraction coupling model, which means that {c} depends on {q} as (a more 

complete derivation, following [49]. 

d[Ca2+]int
d𝑡

=

1

1 +
[CMDN]𝐾CMDN

([Ca2+]i + 𝐾CMDN)
2

(−IpCa + ICab − 2INaCa
Acap

2Fvmyo

− J
vnsr
vmyo

+ JCa
vss
vmyo

− [TRPN]maxCaTRPN),
 (12) 

 

where [Ca2+]int ∈ {c} and CaTRPN ∈ {q}. 

On the other hand, the calcium concentration needed by the excitation-contraction coupling model 

is obtained from the cell electrophysiology model, i.e. {q} depends on {c} specifically through the 

evolution of the calcium bound to troponin [49], in the form 

dCaTRPN

d𝑡
= 𝑘TRPN [(

[Ca2+]int

[Ca2+]T50
)𝑛TRPN(1 − CaTRPN) − CaTRPN], (13) 

where [Ca2+]int ∈ {c} and CaTRPN ∈ {q}. 

The electrophysiological and mechanical activity of the heart are bidirectionally coupled through 

active stress (from electrical diffusion to solid deformation) and the effect of deformation on 

diffusivity and stretch-activated ionic currents. 

The relevance of this work is that Alya has the capabilities for solving highly complex, tightly coupled 

electro-mechanical models of the heart using HPC facilities in an efficient manner and taking into 

account all physiologically relevant boundary conditions. Linking Alya to subject specific data 

including genomics, protein structure and kinetics will be performed through MUSICO module, as a 

part of Task 5.4. Here, in the following section, we give just brief description how subject specific 

data will be incorporated into Alya (or PAK) finite element solver. 

2.8. Solid Mechanics 

The electrical activity of the cells is occurring in a solid domain that is deforming. In this way, the 

mechanical deformation of the tissue is as important as the electrical activity. When modelling the 

solid mechanics of the heart, two sources of stresses should be accounted, the passive and active 

portion. Passive stresses are a consequence of the structural properties of the cells and the 

connective tissues. Active stresses are a consequence of the electro-mechanical activity of the heart. 
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The final stresses produced in the tissue are obtained adding the passive stresses and the active 

stresses. A detailed description on the solid mechanics modelling currently working in Alya can be 

found in the published thesis by Alfonso Santiago. 

To model solid mechanics we use the finite elasticity framework. The solid mechanics in the 

heartbeat problem should include the stresses produced by the material model, the boundary 

conditions, the fluid that is making pressure in the solid walls, and the active tension induced by the 

myocytes. The passive part is modelled as a slightly compressible invariant-type material [77]. The 

implementation has been published by Lafortune et al. [78] 

Briefly, as an active stress formulation was used, the stress term is additively decomposed into 

passive and active terms, such that 

𝜌0(X)
𝜕2u(X)

𝜕𝑡2
− 𝛻X ⋅ [F(Spas + Sact)] = 0,in𝛺0 × (0, 𝑇]. (14) 

Here the active Second Piola-Kirchhoff stress tensor is defined as 

 

(15) 

where 𝑘ort1  and 𝑘ort2  are activation parameters acting in the sheet and normal directions, 

respectively. These constants are taken as in [79], in which an orthotropic active stress tensor is 

assumed, considering that mechanical activation occurs differently in each local direction. It is 

important to point out that the pre-stress appears only in the fibre direction. 

2.9. Boundary Conditions 

2.9.1 0D Hemodynamics 

Solving the fluid structure interaction problem to solve the hemodynamics is not always feasible or 
required for the specific purposes of the simulations being performed.  Therefore, a methodology for 
incorporating the effect of hemodynamics in a less computationally costly manner was recently 
programmed in Alya.  This approach provides the appropriate boundary conditions to represent the 
blood flow inside each ventricle.  This was implemented through a state machine with four phases, 
one for each of the cardiac phases during a heart beat: isovolumetric contraction, ejection, 
isovolumetric relaxation and filling as follows:   
 
Initiation. This phase is needed in order to bring the system to the end of diastole. The ventricular 
pressure applied to the endocardium is brought up to healthy left ventricular end-diastolic pressure 
linearly throughout the phase. In order to keep the volume constant during this phase, a pre-stress 
𝜎0 is assumed to follow the fibre direction and is initialised at t = 0 with a relatively small value and is 
further adjusted during this phase.  The pre-stress 𝜎0  is kept constant for the rest of simulation, at 
the converged value obtained in the last time step of this phase. 
 
 Ejection. When the ventricular pressure surpasses the arterial pressure, the aortic valve opens and 
the ejection phase begins, eventually leading to a reduction in ventricular volume. To model the 
blood pressure of the systemic circulation system during the ejection phase, the two element 
Windkessel model is used. 
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Isovolumetric relaxation. When the ventricular flow reverses, i.e. _Vendo > 0, the isovolumetric 
relaxation phase begins. In this phase, the ventricular pressure decreases while keeping the 
ventricular volume constant at the end-systolic volume (ESV). The pressure is therefore obtained 
analogously to the isovolumetric contraction phase. 
 
 Filling. The isovolumetric relaxation phase ends when the pressure drops below a specified 
threshold. Blood flows from the atria to the ventricle while the ventricular volume returns to its 
initial value (end-diastolic volume). In this phase, the ventricular pressure is modelled with the 
following a decay equation. 

2.9.2 1D Arterial network 

The complexity of these systems motivates simplifying models capable of reproducing the main 
characteristics of interest, i.e.: wave propagation in the cardiovascular circulatory system. Drastically 
reducing the computational cost, one-dimensional mathematical models are an option which has 
been extensively studied in application to blood circulation in arteries [80]. Following the work of 
Formaggia et al. [81] we have developed a one-dimensional finite element model capable of 
reproducing the main wave-propagation characteristics in the human arterial system. With the 
objective of being able to run patient-specific simulations in the limited time frames required by 
practitioners, the algorithm is fully parallelizable between tubular segments so that it will provide 
HPC-grade efficient simulations. Our code allows the prescription of time-dependent boundary 
conditions making possible to couple with three-dimensional models. In particular, we plan to couple 
the one-dimensional model to the fully coupled fluid-electromechanical model of the human heart 
developed by Santiago et al. [82] contained in Alya, the HPC multi-physics code developed at CASE, 
BSC [83]. 
The governing equations and numerical techniques for the one dimensional arterial network, are 
extensively described in [86]. Blood flow in large arteries can be modeled using the condensed 1D 
Navier-Stokes equations in compliant vessels, which comprise momentum and mass conservation as 
follows: 

 

(16) 

where A is the luminal area, R is the radius, Q is the flow rate, P is the mean pressure, 𝜌 is the density 

and 𝛼𝑚 is the momentum correction factor. The term 𝜏0 accounts for the viscous effects since and it 

has the following form: 

 
(17) 

where U is the mean velocity (𝑈 = 𝐴/𝑄) and fr is the Darcy friction factor corresponding to a fully 
parabolic velocity profile. 1D equations are analogous to the 3D versions where in 1D version we 
solve for Q and P and in 3D version for v and p. The fluid dynamic equations presented are 
complemented with a constitutive relation for the arterial wall induced pressure: 
 

 

(18) 

where index 0 refers to reference values, h is the wall thickness and E and K are the material 
parameters that characterise the elastic and viscoelastic material response respectively. 
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2.9.2.1 1D Coupling strategy 

Both codes are coupled by a black-box decomposition approach previously proposed in [86]. For 3D-
1D interface, information is exchanged at every iteration of the FSI problem (see Figure 30. The 1D 
arterial network is only directly coupled with the computational fluid dynamics (CFD) problem in the 
fluid-electro-mechanical model. This weakly coupled scheme is stable for relatively small time steps. 

 

Fig. 13. Dimensionally heterogeneous model of the cardiovascular system. The scheme shows how the 1D arterial network model is coupled 

with the fluid-electro mechanical model. In this black-box approach the arterial model is only connected with the CFD problem. 

At each time step, the 3D heart FSI problem is solved, computing the velocity field in the connecting 
boundary. To obtain the flow rate in the interface for the 3D model, the momentum is integrated 
and then divided by the area A of the boundary: 
 

𝑄3𝐷 =
1

∫𝛤𝑑𝛤
∫𝛤𝜌𝑢𝑑𝛤 (19) 

This flow computed in the 3D heart problem is imposed in the arterial network. The 1D formulation is 
solved, and a pressure is computed for the connecting node. The pressure computed in the arterial 
network is weakly imposed in the boundary 𝛤 of the 3D model as a forcing term: 

𝑓𝑝 = ∫𝛤𝑃𝑖𝑢𝑑𝛤 (20) 

ror the 1D model, pressure and flow are degrees of freedom in each node of the 1D mesh. Following 
this statement, four unknowns are defined in the each nodal interface: Q1, Q2, P1 and P2, using the 
subindex to identify each model. But continuity of flow and pressure are enforced: 

𝑄𝑖 = 𝑄1 = 𝑄2 

𝑃𝑖 = 𝑃1 = 𝑃2 
(21) 

Additionally, not any combination of Qi and Pi is possible for each side of the interface: fixing Qi will 
automatically determine Pi in each one of the models. In this way, let be defined two equations that 
relates Qi and Pi in each node: 𝐹1(𝑄𝑖, 𝑃𝑖) = 0 and 𝐹2(𝑄𝑖, 𝑃𝑖) = 0. In this way, flow rate and pressure 
at the interface i corresponds to a state of the problem [74]. 
 

 
Fig. 14. Scheme of the model used in the first numerical test. A 3D cylinder was solved with Alya and a 1D cylinder was solved with 

ADAN. 
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2.9.3 Pericardium 

The movement of the heart is modulated by the action of the surrounding tissues. In the 
computational solid mechanics, two different pericardial boundary conditions have been tested: the 
sliding pericardium and an elastic spring, which are used at the epicardium. The pericardium acts as a 
sort of sliding surface, avoiding normal displacements of the epicardium, but leaving the tangential 
direction almost free to move. Two studies have been performed using these approaches, one 
published by Alfonso Santiago [83], and the second one, will be published shortly.  In the latter 
approach, the stiffness of the epicardium is being modelled as a Robin boundary condition.  
The pericardial boundary condition as described in [83] attempts to reproduce a physiologic 
deformation of the ventricles, which includes a displacement of the valvular plane towards the apex 
of the ventricle, inducing apex-base shortening. In this way, articles that have reported results with 
excessively constrained boundary conditions like fixing the base of the heart, cannot reproduce at all 
the physiological movement of the ventricles. In [89, 90] authors from two different research groups 
propose a pericardium boundary condition as a frictionless contact problem. In [91] we propose a 
solution that with a different approach achieves a similar result, which is used in this work. We 
propose to restrict the normal displacements 𝑑𝑖𝑛𝑖 = 0 at the ventricular pericardium for the 
deformed configuration while allowing free displacements at the tangential planes, letting the 
boundary to slide. As a matter of fact, the “sliding pericardium” condition is not imposed in all of the 
pericardium, because we leave free the region near the valve plane to allow a more uniform and 
realistic movement. We acknowledge that this condition is a first order approach, because a better 
one should allow some normal movement but with a damper, combining a spring and a velocity-
related viscous force (which has been now implemented and will be published in future work). In this 
work we show that even with the first order approach, the improvement is clear. The forces 
computed by the fluid mechanics are imposed in the endocardium. It is worth to remark that in our 
simulations, there is no other artificial endocardium boundary condition imposed. When used in the 
reviewed articles, such condition is applied on the normal direction (i.e. pressure) through a 
Windkessel function. Authors using this approach have the intention to model the work done by the 
fluid against the endocardium, as it is pumped out of the ventricles. However, when simulating single 
or bi-venticular geometries, applying this force requires to also fix the heart displacement 
somewhere else. As it is clearly shown in [96], when a pressure endocardium function is combined 
with fixing the base the resulting systolic movement is incorrect. In [91], although ventricles contract 
along their long-axis, the apex has a large displacement in apex-base direction and the base remains, 
of course, fixed. Although this can be visually corrected (quoting [91], “For visualization we shifted 
the deformed configuration such that the apex is fixed”) this effect is not physiologically correct. On 
the other hand, we have observed that the pericardium and endocardium boundary conditions 
proposed in this work, produce a much more physiologically realistic movement. 
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Fig. 15. Effect of pericardium boundary condition in a bi-ventricular geometry. Normalized electrical depolarisation is shown as a reference 

for the reader (A).  The following three plots show overall (B), basal (C) and apical (D) longitudinal strain, respectively.  Then (E), snapshots 
at maximum contraction for the three boundary conditions are shown.  From left to right:  Free(F), Based fixed (T) , and sliding pericardium 

(SP).  Finally (F), the longitudinal strain is shown in the AHA plot segment-wise for each case. 

 

2.9.4 Sensitivity analysis of mechanical parameters on 

physiologically-relevant biomarkers 

A sensitivity analysis was performed to study which mechanical parameters have a strong influence 
on physiologically relevant biomarkers.  These included ejection fraction (EF), which represents the 
amount of blood that is pumped during a heart beat; end-systolic pressure (ESP), which is the 
maximum ventricular pressure achieved in the left ventricle during a heart beat; longitudinal 
fractional shortening (LFS), which is a fractional version of the relative displacement between the 
endocardial apex and the base; and wall thickening (WT), which is the fractional version of the 
relative displacement between points in the endocardium and epicardium that are at the same 
position relative to the apico-basal axis.  
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Sampling-based approaches involve the generation and exploration of a mapping from the model 
parameters, for this study, the Latin Hypercube Sampling (LHS) was employed.  
 
Ten mechanical parameters were included:  
• Stiffness of the pericardium 
• End-diastolic pressure 
• Pressure at the start of ejection 
• Windkessel capacitance 
• Windkessel resistance 
• Orthotropic stress parameter 
• Active stress scaling parameter 
• Fiber angle 
• Bulk modulus 
• Stress (linear) parameter in the sheet direction 
 
Results showed that the relationships between parameters and biomarkers are monotonic (and 
nonlinear) in almost all of the cases. The parameter which affects the mechanical biomarkers more 
strongly is the active stress scaling parameter, with a particularly strong effect on EF.  Results show 
that increasing the pressure at which the ejection phase is triggered increases the haemodynamic 
load of the left ventricle and delays the transition between isovolumetric contraction and ejection 
phases, directly affecting the maximum pressure obtained during a cardiac cycle. The results suggest 
that EF, ESP and LFS are mainly dominated by one or two parameters each: EF is dominated by the 
stress scaling parameter and inversely related to the orthotropic stress parameter; ESP is dominated 
by pressure at the start of ejection and inversely related to the orthotropic stress parameter; and LFS 
is dominated by the fibre angle and inversely related to the orthotropic stress parameter.    

2.10. Computational Fluid Mechanics 

2.10.1 Intraventricular CFD 

The physics describing the fluid inside the ventricles are governed by the incompressible Navier 
Stokes equation. The discrete compact form for the Navier-Stokes equation can be rewritten by 
defining 𝑣:= 𝑣𝑖  and let 𝜖  and 𝜎  be the velocity rate of deformation and the stress tensors 
respectively defined as: 
 

 

(22) 

With this, we can define a vector with the unknowns 𝑈 = [𝑣, 𝑝]𝑇, a differential operator 𝐿(𝑈) and a 
force term 𝐹 as: 

 

(23) 

where the domain velocity 𝑣𝑑  becomes the mesh velocity 𝑣𝑚 once the equation is discretized. If the 

matrix 𝑀 = 𝑑𝑖𝑎𝑔(𝜌𝑓𝐼, 0), where I is the identity tensor, we can write the incompresible Navier-
Stokes in the compact form: 
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(24) 

The numerical model is based on FEM, using the variational multiscale (VMS) method to stabilize 
convection and pressure. The formulation is obtained by splitting the unknowns into grid scale and a 

subgrid scale components, 𝑈 = 𝑈ℎ + 𝑈
˜
. This subgrid scale 𝑈

˜
 is also modelled. Lets define 𝑅(𝑈

˜
) the 

Navier-Stokes residue as: 

 
(25) 

Then the expression  

 
(26) 

is considered for the stabilization where 𝜏 is a diagonal matrix, depending on the convection velocity. 
Solving strategy:  the resulting system is solved through a velocity-pressure splitting strategy, already 
implemented in the Alya simulation code. Time discretization is based on second order backwards 
differences, and linearization is carried out using Picard method. At each time step, the system: 
 

 

(27) 

must be solved for velocity (u) and pressure (p) vectors. In order to solve this system efficiently in 
supercomputers, a split approach is used. The Schur complement is obtained and solved with an 
Orthomin (1) algorithm [72]. To do so, the momentum equation is solved twice using GMRES 
(Generalized Minimal Residual Method) and the continuity equation is solved with the Deflated 
Conjugate Gradient algorithm. 
 

2.10.2 Fluid structure interaction 

We need to compute the solution for the contact boundary (also called wet surface) 𝛤𝑐  (see Figure 
3). In this surface, the solid domain deforms the boundary and the fluid imposes forces due to the 
inertia, the pressure and the viscous stresses of the blood. In this part of the problem is where the 
multi-code approach described in Section 2.1 eases the implementation. Having two Alya instances 
solving the domain-specific problems, allows to easily implement the FSI relaxation strategies. 
The main two families of methods to solve FSI problem are the following: the ALE and the immersed 
boundary (IB) methods [86]. The former deforms the fluid mesh following the solid wet boundary, 
and the latter tracks the wet surface in an Eulerian fluid mesh to enforce velocities in the fluid. The 
ALE method may require remeshing, but has a more precise solution. The IB method mesh 
requirements are more lenient, but the continuity equation may have convergence problems due to 
the spatial interpolation. Also, due to the same reason, the IB method lacks numerical precision. Alya 
already has efficient CSM and CFD solvers. In this way, reusing this codes to solve the FSI problem 
with the partitioned ALE method, is a natural way to proceed in our work.  The FSI algorithm has 
been described in detail in [84,91], therefore results on biomedical applications will be described. 
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Fig. 16. Analysis of a healthy systole. Detail of the ventricular electrical depolarization, deformation and fluid dynamics. 

 
Fig. 17. Analysis of a healthy systole. Image sequence similar to Figure 31 but using Q-criterion isosurfaces at 50[𝑠−2]. Observe that the 

scale of the velocity module goes up to 20[cm/s]. 
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Fig. 18. Analysis of a healthy systole. Image sequence for the aorta showing the co-planar aortic arch output, the brachiocephalic output and 

the left common carotid artery output. Arrows and colors represents velocity. A short axis view for the aortic root is also shown. In this last 

view the helical pattern in the aortic root is clearly seen. 

The ventricular fluid dynamics (in Figures 16, 17 and 18) features a fairly uniform and laminar flow, 
with maximum velocities of 9.8 [cm/s]. On the contrary, flow in Figure 41 features a more active 
pattern, with maximum punctual speeds above 80 [cm/s] (comparable with the 100 [cm/s] obtained 
with MRI measurements by [98]), with larger transversal gradients, and a slight backflow despite the 
net outflow condition. The aortic root section in Figure 18 shows a non-symetric flow, with a velocity 
pattern diverted to the lateral part of the aortic root. This flow pattern is also seen in experimental 
measurements [99, 100]. A similar study for the aortic root, comparing different imaging techniques 
with simulation results can be found in [100]. To finish the analysis for the healthy systole, in Figure 
19 we compare a 4D flow MRI image [102] taken from [103] with the simulation results. Both figures 
show velocity path-lines, despite the chosen color scales are different. A high qualitative 
resemblance can be seen. 
The results for the wholeheart fluid-electro-mechanical simulation model under normal conditions, 
at least for the systole, are similar to the experimental measurements, with a physiological behavior 
in most regions. This detailed analysis of the results also define a baseline for the following numerical 
experiments, where pathological conditions are modelled. 
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Fig. 19. Simulation of a healthy systole. Left: MRI 4D flow image taken from [103]. Right: simulation results with the whole heart model. 
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3. PAK 

PAK [34] is high performance finite element analysis (FEA) software for solving complex coupled 
multi-physics / multi-scale problems. The software is written in Fortran 77/90/95. PAK consists of the 
two main modules: PAKSF, for solving coupled/decoupled solid-fluid problems including heart 
mechanics; and PAKT for modelling particulate or ionic mass transport and electrophysiology of the 
tissue in general, and also heart tissue. The PAK software includes: linear and geometrically and 
materially nonlinear structural analysis, linear and nonlinear particulate/molecule diffusive and 
convective transport, laminar flow of incompressible fluid with heat/mass transfer, solid fluid 
interaction, coupled ionic and electric transport, coupled mechanical deformations and ionic 
transport. 

3.1 Electrophysiology module in PAK 

Due to the enormous complexity of biological systems, it would be almost impossible to establish a 
detailed computational model of the electrical field, even for only a single organ (e.g. heart), 
including the entirety of cells comprising the neural network. In order to make computational models 
feasible for practical applications, we implemented the concept of smeared fields, which represents 
a generalization of the previously formulated multiscale smeared methodology for mass transport in 
blood vessels, lymph, and tissue (our recent references [50, 51, 52, 53, 54]). We demonstrated the 
accuracy of the smeared finite element computational models (CSFEM) for the electric field in 
numerical examples. The electrical field is further coupled with ionic mass transport within tissue 
composed of interstitial spaces extracellularly, and cytoplasm and organelles intracellularly. The 
proposed methodology, which couples electrophysiology and molecular ionic transport, is applicable 
to a variety of biological systems, including the heart. 

3.1.1 A summary of the fundamental equations for gradient-driven 

physical processes and FE formulation 

In this section we first summarize the gradient-driven problems related to mass transport in blood 

vessels and tissue, and electrophysiology. Then, we present a finite element formulation for these 

partial differential equations.  

 

3.1.1.1 Fundamental equations for the gradient driven field 

problems 

Flow through porous media. In case of incompressible fluid flow through a porous rigid medium, the 

governing relation is represented by the Darcy’s law 
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
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
 (28) 

where vi is the Darcy velocity (as fluid flux per unit area of the continuum) in direction xi, p is fluid 

pressure and kDij is the Darcy tensor.  The mass balance equation is 
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where qV is a source term.  



D5.2 – Software: Upgrade FE simulation 

Page 38 of 81 

Diffusion. The constitutive law for diffusion is known as Fick’s law, 

 
i ij

j

c
Q D

x


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
 (30) 

and the mass balance equation is 
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Here, c is concentration, Qi flux and Dij is the diffusion tensor. The generality is kept under the 

assumption that the diffusion tensor can be a function of concentration, i.e. it can be Dij=Dij(c). 

 

Electrostatics.  The constitutive law is  
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where JI is the electric flux, G is electric conductivity and Ve is electrical potential. The continuity 

equation for the current density can be derived from Maxwell equations in the form 
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where the current density components Di can be related to the potential Ve as 
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where ε is the dielectric constant. Finally, the continuity equation is 
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where  
e

q
V is a volumetric source term (coming from ionic transport, [55]). 

 

1D-conditions. For further presentation, we give the expressions for the 1D conditions. For the fluid 

flow the 1D conditions follow from the study of flow within pipes [56]. In case of a rigid pipe, the 

governing equation reduces to 

 2

2
0

p

pipe
x

k



=  (36) 

where x  is the pipe direction and pipe
k  is the pipe coefficient which can be derived from the so-

called Hagen-Poiseuille law. Additional terms are present in the above equation for the case of 

deformable pipe [57], but will not be considered in this document.  

In case of diffusion, the 1D conditions follow from equation (31). Hence, we have 
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where x  is the axis of propagation and D is diffusion coefficient. In the case of electrical conduction 

the governing equation has the form (36) with respect to the electric potential Ve, where instead kpipe 

we have GaA with A being the neural fiber cross-section. 

The 1D electric current flow within neural fibers in case of impermeable fiber surface is given be eq. 

(36) where pressure p is replaced with electrical potential Ve, and the coefficient kpipe is replaced with 

axial conductivity Ga. In case of permeable fiber surface, the current flow is governed by the so-called 

cable theory and will be described below. 

Transport through membranes. Continuum domains of a composite media are often separated by 

membranes, or walls in case of blood vessels or neural fibers. For the presentation of the smeared 

methodology we give here the fundamental relations for transport through membranes. In case of 

fluid flow or diffusion we have  

 ( )
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p

wQ k p p= −  (38) 
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c
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with the flux of fluid p

wQ  and mass due to diffusion c

wQ   oriented outward (from in to out); kw and Dw 

are the wall hydraulic permeability and wall diffusivity, respectively. In the case of electrical field, the 

wall electrical flux relies on the so called cable theory, according to [58]. The outlet electrical flux 

(current density) Im can be expressed as 

 
( )

in out

in out e e

m m e e m

V V
I G V V C

t t

 
= − + −

 

 
 
 

 (40) 

where Gm is membrane conductivity and Cm is specific membrane (wall) capacitance.    

3.1.1.2 Finite element formulation 

The above governing equations can be transformed into the FE equations of balance by 

implementing a standard Galerkin weighting method [59]. The incremental-iterative balance 

equation for a single element, for a time step Δt and iteration i, can be derived in the form 
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where the matrices are 
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Here Φ stands for pressure, concentration, or electrical potential as nodal variables; NI are 

interpolation functions, V is element volume; cm is mass coefficient (=0 for fluid flow, and =1 for 

diffusion); Dkm for fluid is the Darcy tensor, while it is Gδij (δij is the Kronecker delta symbol) for 

electrical field.  For the case of Darcy’s flow or no convection, the convection matrix Kv is equal to 

zero.  For electrical potential we have that the “mass” matrix is 

 
, ,

,       ,  1,2,3
IJ I k J k

V

M N N dV sum on k k= =  (43) 

and the convection matrix is equal to zero.  Note that for 1D problems the equations have the same 

form as the above, with one index k and no summation; and that the element volume is V=AL, where 

A is cross-sectional area and L is the element length. Equation (41) assumes implicit integration 

scheme over time, i.e. all variables are evaluated at the end of time step and at the current 

equilibrium iteration. This integration scheme is unconditionally stable and provides the best 

accuracy [60]. 

For modeling transport through the membranes (walls) we have introduced connectivity 2-

node elements for nodes at membranes [61] (Fig. 20a), by using double nodes at the same space 

position at the membrane, with one node belonging to one side and the other - to the other side of 

the boundary between two domains. The balance equation of the form (41) can be applied. The 

“mass” and transport matrices M and K can be written as 
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where Am is the area of the surface belonging to the node, hm is the membrane thickness; in case of 

diffusion Dw is the diffusion coefficient, while instead of Dw we have  kw and Gm for fluid flow and for 

electrical conduction, respectively; cmm=0 for fluid flow and cmm=1 for diffusion. For the case of 

electrical conduction the non-zero terms of the “mass” matrix are    

 
11 22 mmM M A C= = . (45) 

 

3.1.2 Smeared model for field problems 

To introduce the smeared methodology, we first consider a ‘detailed model’ of a composite medium. 
In Fig. 20a is shown a schematic of a medium composed of continuum domains-compartments and a 
network of fiber-like 1D domain. The continuum domains include extracellular space, cells and 
organelles. Capillaries and lymph as vessels, and neural fibers, are represented by 1D elements 
within extracellular space, while cells can contain organelles – hence the continuum domains have a 
hierarchical character. It is assumed that each domain has its own FE mesh of continuum elements, 

while 1D domains have their own 1D finite elements with the coordinate axes along the elements ( x  
axis depicted at one of these fibers).   

 Connectivity elements are shown as A,B; C,D; E,F and enlarged at the top of the figure (the 
nodes C,D, also denoted as 1,2). The two nodes, 1 and 2, have nodal values representing the two 

domains ( out  and in  in the figure). The connectivity elements assigned to the boundary common 

nodes, possess the following characteristics: transport coefficient according the membrane (or wall) 
material property, cross-section equal to the surface area Am belonging to that node, and the length 
hm equal to the membrane (wall) thickness.  
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From the detailed model description, it can be seen that significant effort is required to 
generate the model; and in case of a complex medium such as tissue, the model generation would be 
an impractical or even impossible task. This task would be much more demanding if instead of 
connectivity elements, continuum FEs are employed for membranes. 

 
Fig. 20. Schematic of detailed model and smeared model. a) Detailed model of tissue as composite medium with continuum subdomains 
and capillaries/fibers, 2D representation, with continuum, 1D and connectivity elements; b) Smeared FE representation of the detailed 
model; c) Composite smeared finite element (CSFE) with subdomains and connectivity element at a FE node J. 

We further introduce a smeared model by formulating a continuum composite finite element 
(CSFE) which includes all constituents (continuum and 1D) in a way that the true physical fields, 
corresponding to a detailed model, are represented in a smeared (a kind of average) sense, which 
should provide adequate accuracy. A schematic of the smeared model, for the same detailed model 
of Fig. 20a, is shown in Fig. 20b, with continuum elements present only. There are a few conceptual 
steps to formulate the CSFE element. 

First, it is necessary to transform the 1D balance equations into the corresponding 
continuum format. The derivation of the Darcy and diffusion tensors is given in [50] while, for a 
general physical filed, the continuum transport tensor is derived in [53]. This tensor can be expressed 
as  

 1
j i j

K
tot

i K K K KD D A
A

=   (46) 

where 

 
tot K

K
A A=   (47) 

is the total area of 1D domains in a reference volume, surrounding a point in space, with cross-

sectional areas AK; DK and 
Ki  

are transport coefficients along the 1D elements and directional 

coefficients, respectively.  

The next important statement in the CSFE formulation is that each domain has its own field 
within the corresponding volume of the CSFE. Hence, the FE node of the CSFE has a number of nodal 
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variables K
  (‘degrees of freedom’) equal to the number of domains Nd, as shown in Fig. 20c. The 

domain volume VK is related to the total element volume as  

 and   d  ,      K V K V

K KV r V V r dV= =  (48) 

where V

Kr  is the volumetric fraction.  

Finally, we include connectivity elements to couple the corresponding domains. We 
introduce connectivity elements at each node of the CSFE, according to the above described 

connectivity elements in the detailed model. The cross-sectional area 
JKA of a connectivity element 

at node J for the domain K can be expressed in the form   

 ( ) ( )    
JK AV K AV

J J

K K K
VA r V r r V= =  (49) 

where 
AV

K
r

 
is the area coefficient, i.e.  

 K

AV

K

K A
r

V
=  (50) 

and VJ is the volume of the total space of the continuum belonging to the node J. This volume can be 
evaluated as 

 

el

J J el

el V

V N dV=   (51) 

where summation el goes over all finite elements with the common node J.  Note that all the 
surfaces, volumes and the volumetric and area ratios are assigned to nodes, which in practical 
applications is convenient for modeling of any non-homogenous property of the material system.  

The finite element balance equations for continuum and connectivity elements are of the 
same form as in detailed model (equation (41)) with the matrices 

 
IJ m I J

V

K
r
V

M c N N dV= 
 

, ,
,       , :  , 1,2,3

IJ I i J j
V

K
r

ij V
K D N N dV sum on i j i j= =

 

I I V
V

V K
r
V

Q N q dV=   

(52) 

where the material parameters are as in (42). In case of electrical field, the matrix M in (43) is now 

 
, ,

,       ,  1,2,3
IJ I k J k

V

K
r
V

M N N dV sum on k k= =  (53) 

and the source nodal vector  due to ionic transport of a molecule m is [58]  

 m
mE m Ke
I I V

i iV

DFz V
Q N c r dV

RT x x

  
=  

  
  (54) 

where D is diffusion coefficient, zm is molecule valence, F is the Faraday constant, R is the gas 
constant, T is absolute temperature, and cm is concentration. The surface areas entering into 
matrices of the connectivity elements are as given in [54]. 
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3.1.3  Smeared model for electrical field 

Here, the fundamental equations for electrostatics are summarized and then the smeared model is 

formulated in detail, following the general concept in the previous section. 

First, consider electrical flow within nerve fibers. As schematically shown in Fig. 21a, the 

current flows along the axon, but there is also lateral flow through the axon wall due to so called 

spines shown schematically in Fig. 21a. The governing balance equation relies on the so-called cable 

theory. For the axial current flow along a nerve without lateral flow, the basic relation is   

 
e

x a

V
I G

x


= −


 (55) 

where Ix is the current density along the fiber axis x (as schematically represented in Fig. 21a) Ga is 

axial conductivity and Ve is electric potential. We will further use term “current” for current density 

(A/(unit area)).  In case of large nerve fibers, there is practically only the axial flow, and the FE model 

consists of the 1D elements with a standard form (41) of balance equations [50].  

 The lateral flow can be expressed in the form (taking that current going out of the fiber is 

positive),  

 
( )

in ext
in ext e e

mem m e e m ion

V V
I G V V C I

t t

  
= − + − + 

  
 (56) 

where 
mG  and 

mC  are wall conductivity and capacitance, respectively; in

eV  and ext

eV are potentials 

within fiber and in the surrounding; and 
ionI  is ionic current due to flow of various charged 

molecules through the wall. The lateral flow is modeled by connectivity elements 1,2 at double 

nodes along fibers and on the cell membranes (Fig. 21b). 

 

 

Fig. 21. Schematic of nerve fibers and cells. a) Dendritic tree and 1D finite elements along the fibers with connectivity elements 1,2; b) Cell 
with current  IV  through membrane due to potential difference membrane, and ionic current  Iion due to molecule flow modeled by 

connectivity elements 1,2. 

The balance equations for axial current flow along the fibers are transformed into the 

continuum format, with the conductivity tensor according to (46), i.e.  

 1
j i j

Ktot

i aK K K KG G A
A

=   (57) 

 



D5.2 – Software: Upgrade FE simulation 

Page 44 of 81 

where aKG are axial conductivities of individual fibers. The lateral flow from fibers and flow through 

cell membranes are modeled by connectivity elements, with balance equations of the form (41) and 

matrices (analogous to expressions (44)), i. e.  

 
11 22 12 21

e e e e

m memM M M M C A= = − = − =  

11 22 12 21

e e e e

m memK K K K G A= = − = − =  
(58) 

where Amem is the surface area belonging to nodes 1,2, either from a fiber surface or from a cell 

membrane. This surface is related to the volumetric fraction of the domain according to (49). 

Additionally, there is a source term in the balance equation due to ionic current Iion for a node J, as 

 e

VJ memJ ionJQ A I= . (59) 

Regarding the electrical potential within a continuous media, the fundamental continuity equation 

can be derived for electrostatics from Maxwell’s equations as  

 2 2

,        :  1,2,3Ve e
i e

i i i i

V V
G q sum on i i

t x x x x


   
− = + = 

     
. (60) 

where ε is dielectric constant; Gi are conductivities in coordinate directions xi; and V
eq  is a source 

term (due to ion flux). This equation can be transformed into the FE format [59] so that the balance 

equations has the following form  

 
( ) ( 1)1 1i i V ext

IJ IJ eJ IJ IJ eJ eI eIM K V M K V Q Q
t t

−   
+  = + + +   

    
, (61) 

where ext

eIQ  are external effects to the element, and 

 
,     ,     :  1,2,3J JI I

IJ V IJ i V

i i i iV V

N NN N
M r dV K G r dV sum on i i

x x x x


  
= = =

     , 

V V

eI I e V

V

Q N q r dV=   

(62) 

In case of the continuity domain representing a network of small nerve fibers, we have: 

 
0,     ,     , :  , 1,2,3JI

IJ IJ ij V

i jV

NN
M K G r dV sum on i j i j

x x


= = =

  , (63) 

 

In summary, the main characteristics of the composite smeared finite element (and the 

corresponding FE model) for electrical potential within a biological system are as follows: 

• Large nerve fibers (big axons) are modeled by 1D finite elements, connected to a network of 

small fibers 

• Small fiber network is represented by a continuum with the corresponding volumetric 

fraction and conductivity tensor (57); the balance equation is (61) with the element matrices 

(63) 

• Continuum domains include: extracellular space, different groups of cells, and organelles 

within cells. They occupy the volumetric fractions rV-s of the element, and the balance 

equations (61) include matrices and source term (62) 
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• Lateral current flow from fibers and through membranes of cells and organelles is modeled 

by 1D connectivity elements with matrices (58) and source terms (59) 

The data necessary for the smeared model consists of the geometrical part associated with the 

FE nodes: volumetric fractions J
Vr , area coefficients J

AVr , volumes VJ belonging to nodes, wall or 

membrane thicknesses, geometric characteristics of the fiber network; and material data, which also 

can be associated with the FE nodes: conductivities  - within fibers, through membranes and within 

continuum domains, dielectric constants, capacitances of walls and membranes, characteristics of 

the ionic currents through membranes.  

3.1.4  Smeared model for ionic transport 

Gradient driven transport of charged molecules (ions)/particles in a continuum space or through 

biological membranes is affected by the field of electrical potential. Also, the ions change the field of 

electrical potential, therefore there exists a coupling between ion transport and concentration, and 

the electrical field. Here, we first summarize the fundamental equations in this physical problem and 

then present a smeared FE methodology for computational modeling. 

The mass flux Ji in direction xi of ions m has a part corresponding to diffusion and, 

additionally, a part due to the electrical force based on the Nenrst-Plank equation; and can be 

expressed as [55]  

 m m
m m e
i

i i

Vc Dz F
J D c

x RT x


= − −

 
, (64) 

where D is diffusion coefficient, zm is molecule valence, F is the Faraday constant, T is absolute 

temperature, and cm is concentration. Then the mass balance equation is 

 
,     :  1,2,3

m m m
m e

i i i

c c Dz F V
D c sum on i i

t x x RT x

    
= + = 

    
, (65) 

The FE balance equation which follows from this equation has the form (59) for the 

concentration field, with the source term due to electrical effects   

 m
mE m Ke
I I V

i iV

VDFz
Q N c r dV

RT x x

 
=  

  
 , (66) 

This source term can be evaluated as follows:  

 1 2mE mE mE

I I IQ Q Q= + , (67) 

where 

 
1

m m
mE e
I I

i iV

DFz c V
Q N dV

RT x x

 
=

  , (68) 

 2 2
2 1m m

mE m m m me
I I I

mi iV V

DFz V DF z
Q N c dV N c z c dV

RT x x RT

  
= = −     

  . (69) 
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In the last equation the electrostatic balance of charge due to ionic charge contribution is 

considered, according to reference [55]. Summation in the last equation includes all ion types 

involved in mass transport. 

The source term in equation (62) due to presence of ions within the domain can be 

calculated as  

 V m
e m

m

c
q z F

t


=


 , (70) 

Next, we present the fundamental relations for ionic transport through cell membranes, 

following [60],[61]. The relations given below are based on the Nernst equation   

 
,    Ni

o

zFE
N

RT

a
e

a
− == , (71) 

where ai and ao are molecular activities on the two sides of the membrane (‘inside’ and ‘outside’). 

Assuming linear distribution of the gradient of electrical potential across the membrane thickness, 

the flux through the membrane can be expressed as 

 
( ) ( )

1
N

n n on in od d d idN

N
J J J P a a P a a e

e
= + = − + −

−
 (72) 

where indices ‘n’ and ‘d’ stay for neutral and ionized forms of molecules for fluxes Jn and Jd, 

permeability coefficients Pn and Pd, and molecular activities. The steady state of the electrical field is 

assumed. Activations can be related to the concentration of molecules c as  

 ,        n n n pHda f c a f k c= =  (73) 

where fn and kpH are material constants which take into account chemical and electrochemical 

characteristics of the transported molecules (details are given in [60],[61]). Substituting (73) into (72) 

and using material properties at both membrane sides, the expression for the molecular flux can be 

expressed as  

 
( ) ( )

1
o N i

n n o i n pH o pH id N

N
J P f c c P f k c e k c

e
= − + −

−
 (74) 

where 
o
pHk and 

i
pHk are constants at the two sides of the membrane. 

The relation (74) leads to formulation of the diffusion matrix for the membrane connectivity 

element. The matrix terms in equation (63) are now   

 
0

11 21
1

mem n n d n pHN

N
K K A P f P f k

e

 
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− 
 

22 12
1

N
i

mem n n d n pHN

Ne
K K A P f P f k

e

 
= − = + 

− 
 

(75) 

where Amem is the membrane surface belonging to a FE node, according to eq. (66). 

We note that the composite smeared finite element contains field of concentration of each ion 

and for each domain. A practical computational procedure in modeling the coupled problem 
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between electrical field and ionic concentration is implemented in our FE software package PAK [62] 

with the following steps:  

1) Electric potential field is determined using concentration distribution from the end of 

previous step, for all ion types. 

2) Concentration field of each molecule is calculated using the electrical potential from step 1. 

Steps 1 and 2 are repeated until differences in solutions for both electrical potential and 

concentration of ions satisfy the adopted convergence criteria.  

3.1.5  Discussion – reference to other computational models 

In this section we compare the introduced smeared model with other computational models 

available in literature. Electrophysiology, as well as particulate/molecular transport, has long been 

the subject of experimental and theoretical research. Various numerical models, starting with 

analytical to today’s modern computational models, have been formulated and implemented.  Here 

we refer mainly to the models related to heart electrophysiology and emphasize novel features of 

our smeared models important for applications. 

 Initial models of cardiac electrophysiology rely on the seminal work of Hodgkin and Huxley 

[63]. In reviews [64,65] monodomain and bidomain models of tissue, connected to the basic cell 

models, are presented for heart electrophysiology. A critical analysis regarding practical applications 

of these models is given in [66], with particular reference to the format of data preparation, as 

CellML and software simulator Chaste [67]. The approach that most resembles our smeared models 

in principle, is the so-called bidomain model introduced decades ago [68-71] derived from discrete 

models by using homogenization procedures. The bidomain model was further extended to a model 

with two types of cells, called the extended bidomain model [72]. The governing balance equations 

of the three continuum domains (extracellular space and two cell types) in [72] are derived according 

to the ohmic conduction law using the conductivity/resistance characteristics of each domain. 

Additionally, the terms corresponding to membrane conduction and ionic currents Iion between the 

three domains are included. These membrane terms take into account the membrane conduction 

and capacitance properties, and the corresponding area-to-volume ratios. The FE nodal variables 

consist of the potentials of the three continuum domains. 

 For purposes of comparison to our model, we show here the fundamental equations of 

reference [72] using our notation. For the three domains, cell group 1, cell group 2, and extracellular 

space, the equations are (terms not important for our analysis: stimulus current and gap effects, are 

omitted) 
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(76) 
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where the upper indices 1 and 2 correspond to the first and second group of cells, while ‘ext’ stands 

for the extracellular space. These equations are then transformed to the FE format in a standard 

Galerkin weighting procedure used above [59], and integration is performed over the entire domain 

volume.  

 We further summarize differences between our smeared model and the bidomain or the 

extended bidomain model (called further as the previous models). Also, we emphasize our new 

formulations.  

1. Considering electrophysiology, the first and fundamental difference between previous 

models and our smeared models is that the previous models are case sensitive, while ours 

are general.  The previous models rely on the apparent material properties of the entire 

tissue, while our models use the true material parameters, independent on the tissue 

composition.  This difference comes from the assumptions used in the derivation of the 

governing balance equations. In the previous models, these equations (e.g. equations (76)) 

are derived by homogenization over the entire tissue volume, including cell membranes, 

through the area factor 
AVr  and continuity conditions at the membranes [71]. Integration is 

therefore performed over the entire domain, without including the participation of 

volumetric fractions of the individual constituents (compartments). This represents a 

significant drawback which can be illustrated in the following simplified example: Assume we 

have a current flow to a closed domain composed of different types of cells and extracellular 

space, separated by membranes, with their own conductivities and dielectric constants. The 

electric charge and potential within each of the constituents must depend on their respective 

volumetric fractions. Therefore, the traditional models practically deal with the apparent 

material parameters which depend on the structural composition of the tissue.  On the other 

hand, our smeared models consider the entire medium as a composite where a 

compartment K occupies the volume specified by volumetric fraction K

Vr , and the balance 

equations are set by using the true material parameters of that compartment. No additional 

condition is employed and the equations are independent of the tissue composition.  The 

compartments considered here include: large vessels, large neural fibers, capillary network, 

small neural fibers, extracellular space, and different groups of cells composed of cytosol and 

organelles. The spatial numerical integration goes over the K

Vr V  occupied by the 

compartment K. For organelles, both in diffusion and in electrophysiology, the volume 

fraction has a hierarchical character, i. e. for a cell group N, 

k k N
r r

N V V
V V=                                                                                  (77) 

where 
k
N

r  is the relative volume ratio of the organelle with respect to the cell volume, whose 

ratio 
N

V
r  is related to the finite element volume V. Accuracy of our smeared models is 

assessed by comparison to the detailed FE models of a composite tissue, given here and in 

our previous publications [50,53,54].  

2. A significant novelty of the smeared model is the representation of a 1D processes (e.g. fluid 

flow, diffusion, electric conduction within a fiber-like domains) by continuum equations with 

a consistent transport tensor (46); and integration goes over the CSFE volume occupied by 

the 1D network space. This approach was initially introduced in our cited references for 

convective and diffusive transport, along with the demonstration of the accuracy of 

solutions, and herein is applied to electrophysiology. The entire His-Purkinje system of the 

heart [71] can be modeled using our smeared continuum representation in a way analogous 

to modeling a capillary network [50].  Our model has a significant distinction with respect to, 
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for example, the model in [74] which is based on the bidomain formulation and averaging 

over the fiber cross section. 

3. The electrostatic equations (60) used in our formulation are more general than those in (76), 

since they take into account the rate of change of the potential (the term on the left- hand 

side), which previous models omit. 

4. Formulation of the connectivity elements between different physical fields is a unique 

feature of the smeared models. These elements are particularly suitable for including 

specificities of the membranes (cells, organelles) and vessel walls such as partitioning at the 

membrane/wall common surface with the continuum, or material nonlinearities in case of 

transport or electric conduction. The inclusion of gap junctions between cells, introduced in 

[72] and [75], or the condition that connections between Purkinje fibers and tissue occurs at 

the fiber ends, is straightforward by employing the appropriate connectivity elements. Also, 

ionic currents due to ion flow through membrane channels (Iion) [76] can be included in these 

elements, as well as transport of specific molecules such as calcium. Geometrical terms 

related to the connectivity elements are described above (equations (48-50)). There are also 

important features of the connectivity elements regarding the convergence rate during 

equilibrium iterations at the global level – the matrices of these elements have a so-called 

tangent character for improved convergence [59]. These elements are also computationally 

efficient, since they do not require numerical integration (as needed in implementation of 

equations (76) in traditional models).    

5. A 1D finite element is introduced to model current flow which includes current conduction 

along a neural fiber and lateral loss of electrical charge through the fiber surface. The FE 

formulation is based on cable theory and the element accuracy is assessed by comparison to 

analytical solutions; details provided in Appendix 8.1. This element is formulated for 

modeling electrical signal transmission along large axons, however it is also applicable for 

modeling smaller neural fibers such as in case of Purkinje network within the heart. Our 

concept is straightforward and simple (with demonstrated accuracy) when compared to ref. 

[74], where a complex homogenization procedure was employed to couple 1D signal 

propagation within the Purkinje network to a bidomain continuum model of the heart tissue. 

6. Another novelty introduced is our procedure for bidirectional coupling of the ionic transport 

and electrical field.  In the continuous domains (extracellular space, cell interior, organelles) 

this procedure relies on equation (65) which is transformed to the FE framework. Also, the 

coupling is included into our connectivity elements, following formulation given in [60]. The 

presented methodology is suitable and straightforward for general applications at the organ 

level, as demonstrated by the presented examples.  

      There are a number of issues, not mentioned above, that are important when considering 

electrophysiology and coupling to other physical fields in living organisms, for which the smeared 

methodology can be effectively applied. For example, procedures that improve computational 

efficiency of the monodomain and bidomain models, e.g. with specific solution algorithms, or 

analysis of stochasticity in the heart electric signal propagation dynamics, can be implemented into 

our smeared models.  Finally, coupling electrophysiology to the mechanics of muscles, including 

multiscale muscle models, can be efficiently implemented into our smeared models. 

3.1.6  Membrane currents according IORD model 

Accumulated current density (IORd) in cell membrane is calculated according ORd model [36], and 
added to equation (40) of the FE solution procedure. Currents of ORd model which affects 
concentration of the Ca2+ in myoplasmic compartment are:

pCaI ,
CabI and 

,NaCa iI ; while current 
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which affects concentration of Ca2+ in the subspace compartment are
 CaLI and 

,NaCa ssI . Mean 

current density 
CaI for transport of the Ca2+ ions can be calculated as: 

 
( ) ( ), ,2 2

myo ss
Ca pCa Cab NaCa i CaL NaCa ss

myo ss myo ss

V V
I I I I I I

V V V V
= − + −  − − 

+ +
 (78) 

where myoV  and ssV
 
are volumes of the myoplasmic compartment and subspace compartment, 

respectively.  Mean concentration in cells, 2

mean
Ca +  

, is calculated as average concentration in cells 

composed  of: myoplasmic (denoted by index “i”), subspace (“ss”), network SR (“nsr”), and junctional 
SR (“jsr”) compartments, according to [36], i.e. 
 
 ( )2 2 2 2 2 /myo ss nsr jsr cellmean i ss nsr jsr

Ca Ca V Ca V Ca V Ca V V+ + + + +         =  +  +  +            (79) 

 

where 0.68myo cellV V= , 0.02ss cellV V= , 0.0552nsr cellV V=  and 0.048jsr cellV V= . Concentrations of 

Ca2+ in each compartement (i, ss, nsr and jsr) of ORd model are calculated according to equations 
provided in Suplementary of Reference [36]. 

3.1.7  Numerical examples 

Several examples are selected, according ref. [43]. The purpose of these examples is to demonstrate 

applicability, accuracy and efficiency of the presented smeared modeling methodology. The basic 

idea is to show accuracy considering electrical signal transfer from nerve fibers to extracellular space 

and further to cells. The connection between nerve fibers and cells in the model goes via 

extracellular space which also represents the fiber-cell junctions present in the biological systems. 

The first example is designed with an electrical gradient across the field. Other examples assume a 

small isolated region of tissue with prescribed potentials within nerves. Isolated tissue domain means 

that gradients with respect to the surrounding domain are neglected. The last example includes ionic 

transport coupled with the field of electrical potential. 

 

3.1.7.1 A tissue domain with electrical potential gradient  

A square tissue domain is shown in Fig. 22. It is assumed that there is a nerve fiber network, 

 
Fig. 22. A square tissue domain (10x10 mm) with network of nerves (in red) connected with tissue. Prescribed constant electrical potential 

at the two boundaries. 

 



D5.2 – Software: Upgrade FE simulation 

Page 51 of 81 

 

with given constant potential at two boundaries, while the lateral boundaries are impermeable both 

for tissue and fibers. The data used in the model are 

Fiber diameter:                  0.25 mm         Volume fraction:  rV= 0.35 (35%) 

Membrane conductivity:   0.1 S/mm2           Capacitance:    0.1 F/mm2 

Conductivity:       Fibers: 1 S / mm             Tissue:    2 S / mm  

Dielectric constant:           0.1 F/mm 

 

In Fig. 23 are shown mean potentials developed over time for the tissue and for the fiber domain, 

obtained by using the detailed model (1D elements for fibers, 2D elements for tissue, and 

connectivity elements for fiber lateral currents) and the corresponding smeared model (number of 

potentials at FE nodes is 2 - for fiber and tissue domain). There are some differences, as expected, 

due to gradients in both fiber and tissue domains. As will be seen in the subsequent examples, this 

difference is smaller when there is no gradient within fibers (which is physiologically more realistic). 

Also, the goal of the examples here is to demonstrate accuracy of transport from capillary system to 

cells or signal propagation from nerve network to cells. Effects of the gradients as in this example are 

dependent on the model size, which here are not further investigated.    

 
Fig. 23. Mean potential in nerve fibers (left panel) and in tissue (right panel) evolution over time. Prescribed potential in fibers at boundary 

(Fig. 22). 

3.1.7.2 A tissue domain with cells and organelles 

Here, we consider an isolated 2D tissue domain with two groups of cells and with three organelles 

within each group, shown in Fig. 24. Cells have different material parameters and volumetric 

fractions. It is assumed that six nerve fibers are present (normal to the 2D space), with prescribed 

potentials as function of time. Three cases of prescribed potential are used – constant, bolus, and as 

in Purkinje fibers in heart. 

 



D5.2 – Software: Upgrade FE simulation 

Page 52 of 81 

 
Fig. 24. A tissue domain of size (50 x 50 μm) with cells and nerve fibers (N1 to N6) normal to the plane. Detailed model with 2D elements 

(left panel) and smeared model (right panel). 

The data used in the models are given below (units: length μm, potential V, conductivity 

S/μm, membrane conductivity S/μm2, capacitance F/ μm2): 

Geometry 

Nerve fibers (33):    Mean diameter  4.76    Volumetric fraction  0.043 

Cell  group 1 (51)                               6.30                                         0.307 

    Organelle 1                                               3.64                                          0.334 

    Organelle 2                                               1.16                                         0.334 

    Organelle 3                                               1.10                                        0.031 

Cell  group 2 (48)                                    6.16                                        0.260 

    Organelle 1                                               3.17                                       0.270 

    Organelle 2                                               1.39                                       0.051 

    Organelle 3                                              1.46                                       0.057 

Material data  

Extracell and fibers    Conductivity          10-7    Membrane conductivity   4∙10-12    Capacitance   10-14 

Cell 1 and organelles                                 10-7                                                 4∙10-10                             10-12 

Cell 1 and organelles                                 10-7                                                 4∙10-12                             10-14 

Initial values: 

E=0 in extracellular space, -0.07 in cells, -0.05 in organelles 

The detailed model consists of 2D elements used for all continuum domains and also for all 

membranes of cells and organelles, with prescribed potential at the surfaces of the nerve fibers. In 

the smeared model we have 2D elements only, which include nerve fibers, all continuum domains 

and membranes, with 10 nodal potentials as nodal variables (depicted in Fig. 24). Note that all 

membranes and the surface of the fibers are modeled by connectivity elements (with no additional 

nodal variables). For the insight into difference in model size of the two models we give the number 

of equations of the system to be solved: 69457 for detailed model, 1089 for smeared model. Besides 

the enormous difference in effort to prepare two models, the size of the models and therefore the 

computational difference is of the order of 102.    

3.1.7.2.1. Constant potential in fibers 

 

It is assumed that the potential within fibers is constant and equals to 0.08V. We use a small value 

for prescribed potential in order to detect differences in domains with micron size.  
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The potential fields for three different time points, for detailed and smeared model, are shown in Fig. 

25. It can be seen that the uniform fields of the smeared model agree with the corresponding 

domains within the detailed model. 

 
Fig. 25. Fields of electrical potential in case of constant potential of 0.08V within nerve fibers. Three time points (t = 0.001, 0.002 and 

0.005s) and several domains, detailed and smeared model (extracellular space, cytosols of cell 1 and cell 2, and organell of cell 2). 

The evolution of the mean potential for several domains is shown in Fig. 26, demonstrating very high 

degree of agreement. This is expected since the potential fields in the detailed model are practically 

uniform for each spatial domain. Some delay can be noticed in potential evolution within cells, and 

particularly within organelles in the cell group 2 due to smaller membrane conductivity for this 

organelle. 
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Fig. 26. Evolution of the mean potential in case of constant potential of 0.08V within nerve fibers. Four domains, detailed and smeared 

model. 

3.1.7.2.2. A bolus function for potential in fibers 

 

It is assumed that a bolus-type function is given within nerve fibers, as shown in Fig. 27. 

 

 
Fig. 27. A bolus-type prescribed electric potential in nerve fibers 

The evolutions of the potential within different domains computed by either model are practically 

the same, Fig. 28. As in the case of constant potential, there is a small time delay and difference from 

the prescribed potential within nerve fibers, due to membrane resistances.  
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Fig. 28. Electric potential vs. time for detailed and smeared model within different domains for bolus function in Fig. 20 within fibers. 

4.3.7.2.3. A function as in Purkinje fibers 
 

Finally, here we use the function for prescribed potential as in the Purkinje fibers of the heart [76]. 

Due to the high value of the potential within the fibers, the potentials in all domains are practically as 

in the fibers, and are the same when using either one of the two models. The evolution of the 

potential in any of the domains is as shown in Fig. 29.  

 
Fig. 29. Electrical waveform within Purkinje fibers of the heart [15] 

4.3.7.2.4. Model with potassium and sodium currents included 
 

Here we include into the model currents through cell membranes due to potassium and sodium flow 

through the membranes (in eq. (56)). Details of the calculation of these currents are given in the 
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Appendix 8.2. We use values of potential corresponding to the last equilibrium iteration, hence it is 

an Euler backward integration scheme. It is assumed that the potential in nerve fibers is constant and 

equal to 0.08V.  

Electrical potential field for four time points and for the detailed model is shown in the first 

row of Fig. 30. It can be seen that the potentials in the interior of cells are different in the two groups 

due to different material properties. In the second row we display the potential field for cell interior 

of group 2. It can be seen that there is agreement between the two models. 

Graphs for the change of the mean potentials over time within different domains are shown 

in Fig 31. The effect of ionic currents can be noted – the ultimate values of potentials are: 0.6V for 

extracellular space, 0.08V for cells (as is prescribed in fibers). The potential within extracellular space 

is higher than in cells due to outward net ionic current flow.  

 
Fig. 30. Fields of electrical potential in case of ionic currents of potassium and sodium included; detailed model – upper panel, smeared 

model –lower panel. 

Graphs for the change of the mean potentials over time within different domains are shown in Fig. 
31. The effect of ionic currents can be noted – the ultimate values of potentials are: 0.6V for 
extracellular space, 0.08V for cells (as is prescribed in fibers). The potential within extracellular space 
is higher than in cells due to outward net ionic current flow.  

 

 
Fig. 31. Evolution of the mean potential in extracellular space and cells, with ionic currents of potassium and sodium included. Solutions 

for detailed and smeared model are practicaly the same. 
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3.1.7.3 Model with coupled diffusion of ions and electrical flow 

In this final example, we consider coupled electrical and concentration fields. The same model as in 

Fig. 24, but now additionally with five capillaries C1…C5, are shown in Fig. 32. Nodal variables include 

concentrations in all domains except in nerve fibers, while the potential field is present in all domains 

except in capillaries. Here, a structural mesh is used for the smeared model to demonstrate that this 

simple mesh can also provide accurate results. Number of equations for detailed model is 72458 and 

for smeared model is 1200. 

 

 
Fig. 32. Detailed and smeared model for coupled electrical flow and ionic diffusion. 

The same data as for Example 3.1.7.2 is used for the electrical field, while for diffusion the material 

data are as follows: 

Diffusion coefficient is the same for all continuum domains: 103 μm2/s 

Diffusion coefficients for membranes are also the same for all continuum domains: 103 μm/s, 

Partitioning coefficients: P = 10 at cell membrane of cell group 2, and P = 10 at organelle membrane 

of cell group 2.  

Coefficients Pn, Pd, o

pHk , i

pHk  and fn  are equal for all cells and organelles: Pn = Pd = 1, o i

pH pHk k= = 10-

6,  fn = 1.2382.   

Bolus-type function is used as in Fig. 27 for both electrical potential (maximum is 0.8 V) within nerve 

fibers and for concentration in capillaries (maximum is 10-4 mg/μm3). 

Concentration and electrical potential field, obtained by the detailed model, at time 1s, is shown in 

Fig. 33. Differences in concentration between the two groups of cells are notable due to partitioning 

P=10 for cell group 2. Mean concentration and electrical field evolution, obtained by the two models, 

are shown in Figs. 34 and 35, respectively. It can be seen, as in previous examples, that there is good 

agreement between the two models. Some differences are expected due to very non-uniform 

concentration and electrical potential fields. We have specified some extreme conditions within the 

model:  two cell groups are located in separate spatial domains and with different material 

properties – it is taken that there is partitioning for cell and organelle membranes of cell group 2. 
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Fig. 33. Concentration (left panel) and electrical potential fields (right panel) at time t=1s, coupled diffusion and electrical flow, detailed 

model. 

 
Fig. 34. Mean concentration vs. time for coupled problem, detailed and smeared model solutions, within extracellular space (left panel) 

and cytosol of cell type 1 (right panel). 

 
Fig. 35. Mean electrical potential vs. time for coupled problem, detailed and smeared model solutions, within extracellular space (left 

panel) and cytosol of cell type 1 (right panel). 
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3.2 Solid mechanics module in PAK 

Muscle contraction occurs from the generation of active stress according to equation (55), where 
concentration of calcium is evaluated by our transport models (detailed and smeared). The 
mechanical response is calculated using the equation of motion. 

3.2.1 Coupling electrophysiology and muscle mechanics   

Muscles (here assumed skeletal muscles) in the body are activated by electrical signals transmitted 
from the central nervous system to muscle cells. The signals trigger muscle activation since they 
produce a change in cell membranes potentials, which further leads to flow through membrane of 
ions vital for cell functioning, such as potassium, sodium, calcium and others [79,80,81]. The ion flow 
is bidirectional through various biological mechanisms.  There are a number of mathematical models 
which connect the membrane potential change with activation of muscles. For example, for cardiac 
muscle, the mathematical expressions for generation of the so-called active stress along the muscle 
fiber, which produces the muscle contractile force, the membrane potential is used directly [82] or 
through the concentration of calcium Ca2+ within the muscle cell [65,83,84]. The calcium Ca2+ is the 
crucial molecule which catalyzes the biochemical cycle of conformational change of muscle fiber 
molecules, and therefore transformation of chemical into mechanical energy. Hence, in modeling 
muscle mechanical action it is necessary for these models to have the calcium concentration change 
within muscle cells over time. We will use a widely accepted relation [83], 
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where act
 is the active stress along the fiber, Ca2+ is calcium concentration; and 50

nC
, max

,


 and 

  are material parameters. 

We use velocity formulation, i.e. the nodal variables are velocities – convenient to couple solid 

and fluid mechanics, while stresses in solids are calculated from strains or stretches.  The balance 

equation of a finite element can be written in the form [85]  

 ( ) ( ) ( )( )int 1 11 1i i iext tt
t t

− − 
+   = − − − 

  
M K V F F M V V  (81) 

where the mass and stiffness matrices M and K have a standard form [85], and V and Vt are 

nodal velocities at the current (or previous) iteration and at start of time step, respectively; Fext and 

Fint are external and internal nodal forces. Specific to muscle deformation is that, besides the 

material stress dependent on the state of deformation, there exists the active stress act
  entering 

into the internal force vector as noted above. 

3.2.2 Example: Electrophysiological and mechanical model of the 

heart wall  

In order to investigate accuracy of our CSFE model, a small sample of heart wall tissue is selected 

(Fig. 36) following data in [65]. From this model we extract the first layer of muscle cells in 

myocardium, which is close to sub-endocardium: the domain which includes the Purkinje fibers. The 

presented example is according to reference [86]. 
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Fig. 36. Small domain of heart wall tissue taken from [65] (left panel), and first layer of muscle cells close to sub-endocardium with mesh of 

Purkinje fibers projected on it (right panel). 

According to the image in Fig. 36b, the detailed 2D model is generated (Fig. 37a), which consists of 

the mesh of 1D Purkinje fibers and 25 cells. Dimension of the model is 230 x 150 μm, volume fraction 

of cells is rV = 0.71 and area/volume ratio of cell is rAV = 0.18. Based on the detailed model, we also 

generated the smeared model (Fig. 37b). Both models are used for calculation of electrical potential, 

calcium current and concentration. FE nodes of 1D Purkinje fibers are connected with 2D FE nodes of 

extracellular space domain using connective 1D elements. As shown in Fig. 37, it is assumed that left 

vertical boundary of the tissue is constrained to displacements in x direction, and lower horizontal 

boundary is constrained to displacements in y direction. We assumed that muscle fibers have 

longitudinal direction with respect to the muscle cells, i. e. they are aligned to the x direction. 

 
Fig. 37. a) The detailed heart wall model with cells and a network of Purkinje fibers; b) Smeared model with tissue and Purkinje fibers 

associated to nodes of the CSFEs in a smeared manner. 

 Data used in the model are: electric conductance (Gi, i=x,y,z) of extracellular space (further 

called tissue), cells and in neural fibers, is 1000 [AV-1m-1]; specific membrane conductance (Cm) of 

Purkinje fibers is 1000 [S/μm2]; specific membrane capacitance of Purkinje fiber’s membrane and cell 

membrane is 1000 [AsV-1μm-2], and Gm=0 for the fiber membrane. Diffusion coefficient of Ca2+ for 

tissue and cell is assumed to be 1000 [μm2/s], while it is assumed that there is no diffusive transport 

though cell membrane. We used linear elastic model for heat cells and extracellular space with 

Young’s module of 1000 MPa and Poisson ration of 0.499. Material parameters of the muscle 

mechanical model (eq. (53)), used in this example, are: n = 0.4, 50 0.5nC = , 0.2 =  and max 100 =

kPa. 

   The function of the electric potential is consisted of two identical cycles and is prescribed at 

inlet nodes of the Purkinje mesh (Ve(t) in Fig. 37). We assumed constant potential inside cells (Ve = -
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20 mV). Accumulated current density (IORd) in cell membrane is calculated according ORd model [81], 

and added to equation (40) of the FE solution procedure. For these conditions, change of mean 

electric potential within tissue is shown in Fig. 38a. Results are almost identical for both detailed and 

smeared model. Mean current density 
CaI for transport of the Ca2+ ions can be calculated as in (78). 

Change with time of mean current density obtained by using detailed and smeared model is shown in 

Fig. 38b, where Ica for the detailed model is calculated as average over all cells.  

 
Fig. 38. a) Change of electric potential over time in extracellular space (tissue) domain - detailed and smeared model, with prescribed Ve(t) 
at inlet nodes of Purkinje fibers and prescribed Ve = -20V within cells (green). b) Change of mean current density Ica [µA/µm2] which affects 

transport of Ca2+ through cell membrane, according to detailed and smeared model. 

Change of the mean concentration within cells (cell domain), for both detailed and smeared model, is 
shown in Fig. 39a. Muscle contraction occurs from the generation of active stress according to 
equation (55), where concentration of calcium is evaluated by our transport models (detailed and 
smeared). The mechanical response is calculated using the equation of motion (56). Mean 
contraction (displacement) of the right vertical tissue boundary is shown in Fig. 39b. The largest 
contractions occur at t = 0.9s and 1.6s, which are in accordance with the Ca2+ concentration within 
cells.  

 
 

Fig. 39. a) Concentration change of Ca2+ in cells due to cell membrane currents. b) Mean contraction (displacement) of the right vertical 
boundary of heart tissue segment, due to Ca2+ change in muscle cells. 

Effective contraction (modulus of the displacement vector) field of the tissue for the first cycle of 
action potential function Ve(t) is shown in Fig. 40. It can be seen that the largest contraction occurs 
at t = 0.9s. Good agreement is observed between the results of the two models.  
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Fig. 40. Effective contractions (displacements) according to the detailed model (left panel) and smeared model (right panel) for four time 

points (0.4, 0.9, 1.0 and 1.1s) of first cycle of action potential function (inlet Ve(t) in Fig. 35a). 

 
Electric field potentials within extracellular space for four time points, according to detailed and 
smeared model, is shown in Fig. 41. Potential within cells is kept constant Ve = -20 mV. Agreement 
between solutions of the two models is noted. 
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Fig. 41. Electric potential according to detailed model (left panel) and extracellular space of smeared model (right panel) for four time 

moments (0.4, 0.9, 1.0 and 1.1s) of the first cycle of action potential function. 
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4. Linking Alya and PAK to subject specific data 

MUSICO module is an essential part of the SILICOFCM platform with a role to make a connection 
between genetic data obtained from gene analysis and their consequences on heart behavior 
(muscle fibres or modulated heart function) that is simulated using Alya or PAK finite element solver. 
Genetic data, extracted by the use of various bioinformatics tools (bioinformatics pipeline variant 
annotation pipeline), will be given as inputs to simulations of modulated muscle function (Task 5.3). 
MUSICO input parameters for the particular genetic variant are read from the predefined lookup 
table, and further used in simulations of muscle fibers behavior or modulated hearth function. 
Lookup table that maps genetic variants to the related MUSICO parameters will be obtained by 
fitting MUSICO results with a number of experiments performed on modulated tissues. 
Within Alya’s or PAK’s incremental-iterative numerical algorithm, MUSICO module is used to 
calculate instantaneous material properties in each integration (Gaussian) point of each finite 
element (FE) in the muscle geometry mesh, as shown in the Figure 42. 
 

 
 

Fig. 42. Finite element muscle model 

 
Unfortunately, due to inherent computing complexity of MUSICO, such massive calls from FE solver 
would lead to unacceptable calculation duration for the simulation of even one hearth beat. 
Therefore, it is not realistic that MUSICO can be directly coupled with FE solvers (Task 5.4). For these 
purposes MUSICO will be replaced with a less calculation demanding modules based on mass-action 
laws or surrogate models built using machine learning techniques. In the first case, MUSICO will be 
used as a reference software for the calibration of mass-action models to ensure that their results 
well enough fit more realistic MUSICO simulations. In second case, MUSICO will be used as a 
generator of a number of input-output pairs, sufficient to teach an adequate regression surrogate 
model. Moreover, in order to speed-up simulations, the platform is provided with parallelized 
computational algorithm. 
 
 
 
 
 
 
 
 
  

MUSICO 
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5. FEA solvers in SILICOFCM platform 

Both ALYA and PAK FEA solver are part of the SILICOFCM cloud platform and serve as simulation 

tools inside it. The provided FEA simulation tools are high CPU expensive solvers. As reported in the 

Deliverable D1.2 the infrastructure requirements for these solvers are depicted below: 

ALYA FEA solver 

Requirement Specification 

CPUs (cores) 2000 

GPUs Not required 

Memory (GiB) 1.8 per core 

Storage (GiB) 90 

 

PAK FEA solver 

Requirement Specification 

CPUs (cores) 250-500  

GPUs Not applicable 

Memory (GiB) 16-64 per core  

Storage (GiB) 2000-4000 in total  

 
In order for the tools to be integrated into the platform two ways will be adopted. The first refers to 

the internal integration where dedicated VMs will be created. In these VMs the solvers will be 

installed in an automated way through a provided executable scripting. Such a procedure is an Install 

Wrapper package which is created using scripting language. The objective of the aforementioned 

procedure is to ensure the solvers will be fully deployed in the target VMs in an unattended manner. 

The provided wrappers will check for the Pre / Post-requisites in order to achieve a successful 

installation. 

The second alternative will rely on the fact that the solvers will reside out of the SILICOFCM 

infrastructure. The abovementioned alternative will exploit external HPC infrastructures where both 

tools could be deployed and executed. For this purpose, the REST API technology can be utilised in 

order for the SILICOFCM platform to communicate externally with the solvers and executed through 

predefined execution scripts. The necessary inputs, BC and parameters will be sent to the target HPC 

machines and when the simulation will be end the results will be transferred safely to the SILICOFCM 

premises. Since the results for such simulations need big file size in order to overcome 

communication bottlenecks only selected attributes and data will be transferred for visualisation and 

assessment by the end user. The latter will be accomplished through automatic predefined 

executable scripts. For security reasons all the communication will be encrypted through TLS 

encryption protocols which is a straight forward way to accomplish secure interconnections. 
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6. Deviation from the work plan 

No delay, change or deviation from the work plan has occurred.  
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7. Conclusions 

The Barcelona Supercomputer Center has been continuously upgrading and testing their code Alya in 

order to comply with the necessary requirements to create electromechanical simulations of the 

hypetrophic cardiomyopathic human heart.  The future work will be to couple the reduced MUSICO 

library to the finite element code Alya to create tightly coupled electro-mechanic simulations of HCM 

patients.   

R&D Center for Bioengineering BioIRC made efforts to upgrade code regarding implementation of 
CSFEM. A general smeared methodology for field problems, as a generalization of the previously 
published applications for diffusion within tissue, is extended to include the electrical potential field. 
This expanding model also incorporates membrane ionic transport, particularly important in muscle 
and heart electromechanics. The concept is further enhanced by including ionic transport in tissue so 
that the concentration and electrical potential fields are coupled. Also, a composite cable finite 
element (CCFE) is introduced for electrical signal propagation within axons and its accuracy is 
verified. Selected examples demonstrate accuracy and efficiency of the smeared method. The 
composite smeared finite element (CSFE) is a continuum element which contains all domains within 
the biological system. The domains occupy volumetric fractions of the element and have their own 
physical fields, hence the nodal variables include all fields. Moreover, the complex 1-D gradient 
driven fields are substituted by a continuum representation using the corresponding transport 
tensors. The physical fields within the CSFE are coupled by connectivity elements (spatially fictitious) 
at nodes which take into account size and properties of membranes (walls) which physically separate 
the domains. Besides the good solution accuracy (in comparison with detailed models), the smeared 
models are easy to generate when simulating processes within complex structures and geometrical 
shapes of biological systems. Furthermore, the smeared models are orders of magnitude smaller in 
the number of equations when compared to detailed models. Thus, we conclude that the presented 
FE models based on the smeared concept offer a novel computational tool for practical applications 
in biomedical investigations. 

 

 

 

 

 

 

 

 



D5.2 – Software: Upgrade FE simulation 

Page 68 of 81 

8. Appendix: Aditional details about PAK 

8.1 FE model of electric conduction in nerves based on the 

cable theory, formulation of the composite cable finite 

element (CCFE) 

We formulate a 1D finite element for electric conduction using the fundamental equation for electric 

conduction along fibers according to the so-called cable theory; this specific finite element is called 

Composite Cable Finite Element (CSFE). The theory was initiated William Thomson in 1850s who 

developed mathematical models of signal decay in telegraphic cables. Later, these models were 

implemented and experimentally verified in neuroscience.   

Analytical solution. In accordance with equations (55) and (56), the cable equation in which 

both axial and lateral currents are taken into account, can be written as 
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In order to compare numerical solution using our composite cable finite element (CCFE), we will omit 

the ionic current Iion and assume that the external potential is ext

eV is equal to zero. These 

assumptions do not reduce the proof of the validity and accuracy of the CCFE. Hence, the equation 

(A.1) can be written as  
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were  
mr (Ω∙mm) and 

mc  (F/mm) are membrane resistivity and capacitance, respectively, and 
lr  (in 

Ω/mm) is the longitudinal intracellular resistance per unit length; they can be expressed as  
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where 
mG is specific membrane conductance (Siemens/mm2),  inverse of 

mR ; 
l   (Ω∙mm) is 

electrical resistance of the axoplasm; 
aG  is the nerve conductance (in  Siemens/mm).  

Further, a length constant λ can be introduced as a parameter that indicates how far a stationary 

current will influence the voltage along the cable. The length constant can be specified as  

m

l

r

r
 =  (A.6) 

The first term at the right-hand side of (A.2) affects the rate of change of the potential, which tends 

to a steady state distribution with time increase (theoretically – infinite time, practically – enough 

large time period). The steady state condition corresponds to 
mc  = 0, so that (A.3) reduces to 
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A general solution of this equation is  
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Constants 
1C and 

2C can be determined from boundary conditions. We will further use the 

conditions as in our numerical solutions: x=0, V=V0; x=L, VL=0, where L is the length along the cable. 

Then, the solution is 
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Composite Cable Finite element.  A 1D finite element model for a nerve fiber is 

schematically shown in Fig. A1. 

 

 
Fig. A1. Composite Cable Finite Element (CCFE). The element includes axial conduction along the element axis 

(current Ix) and lateral  between the fiber and the surrounding tissue (current Imem). The axial conduction is 

modeled by the 1D conductivity FE terms, while the lateral part is modeled by the connectivity elements 1,2 at 

each node. 

 

The axial conduction balance equation, for the equilibrium iteration i, of the CCFE is 

represented in a standard form, which, for the 2-node element with nodes I and J, is 
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−

 = − =  (A.10) 

 

where ext

II is the current coming from the neighboring elements (the ext

II  cancel for all internal 

nodes of the FE system), and the matrix terms are 
2

11 22 12 21

a a a a

a

e

r
K K K K G

L


= = − = − =  (A.11) 

where Le is the element length.   

The lateral electric flow is modeled by connectivity elements 1,2. The connectivity element 

represents the electric flow through the surface belonging to the element. For a node J the size of 

this surface is 

2J JA r L=  (A.12) 

where 
JL  is the length belonging to the node. Then, the balance equation for the element 1,2 at the 

node J is 
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( ) ( )11 1 1i im m m m m t

IJ IJ J IJ IJ J IJ JM K V M K V M V
t t t

−   
+  = − + +   

     
 (A.13) 

where 
1V  and 

2V  are potentials in the fiber in

eV  and the surrounding tissue ext

eV , respectively; t

JV  is 

potential at start of times step; and the matrices are given by equation (58) where the surface area  

Amem  is evaluated according to (A.12).  

Numerical results. The goal is to validate accuracy of the CCFE element by comparing numerical 

results with the analytical solution (A.9). Data used in numerical FE model are: 

V0= 1 mV; VL=0; L=10mm (length of the domain), cable diameter r = 0.5mm, 

Ranges of values used in numerical solutions are:  

• 
aG  =  [1, 100] [S/mm]    

• 
mG  =  [1, 100] [S/mm2]    

• 
mc  = [0, 1, 100] (F/mm²) 

FE model consists of 1D composite cable finite elements (CCFEs), and surrounding continuum with 

prescribed V = 0 at all nodes (Fig. A2). Dimension of the continuum is 10 x 1 mm, and FE division is 

100 x 2. There are also 100 CCFEs. 

 

 
 

Fig. A2. FE model of nerve fiber (CCFE elements) with surrounding 2D tissue. 

 

Distribution of electrical potential in 1D fiber, for three values of the nerve conductance Ga, is shown 

on Fig. A3.  It can be seen how the electrical signal propagation increases with Ga.   

 
Fig. A3. Distribution of electrical potential in in the nerve fiber at stationary state, for case with: Ga = 1, 10, 100 

[S/mm], and Gm = 1 [S/mm2], cm = 1 [S/mm2]. 
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We have selected several material data sets to illustrate how the material parameters affect the 

solutions. The data sets, and the values of length constant, λ, are (Ga [S/mm], Gm [S/mm2], cm 

[S/mm2]): 

aG = 1,        
mG = 1,       r = 0.5,    λ = 0.5 

aG = 100,   
mG = 1,        r = 0.5,    λ = 7.07 

aG = 1,        
mG = 100,   r = 0.5,    λ = 0.0707 

aG = 100,  
mG = 100,  r = 0.5,    λ = 0.71 

 

Diagrams of electric potential distribution along nerve fiber in the stationary state are shown in Fig. 

A4. There is evident agreement between the numerical and analytical solutions. It can be seen that 

solutions 
aG = 1, 

mG = 1 and 
aG = 100, 

mG = 100 are the same, while increase of 
mG  leads to 

decrease of the electrical propagation length.  

 

 
Fig. A4.  Electrical potential vs. length of nerve (analytical and numerical solution) for stationary state for 

various (
aG ,

mG ) values, cm=1. 

 

Change of the potential profiles over time, for Ga = 100, Gm = 1, cm = 10, is shown in Fig. A5. It can be 

seen from this figure how the profiles approach to the stationary shape. The stationary profile is 

reached after 20s, since after that time the profiles remain practically the same (changes of potential 

in all points become very small). 

 

 
Fig. A5. Electrical potential profiles for several time moments during transient states. Data:  Ga = 100, Gm = 1, cm 

= 10. The stationary profile is reached at t=20s. 
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Finally, we show in Fig. A6 how time for reaching the stationary state depends on the specific 

capacitance of membrane cm. It can be seen that dependence is linear. 

 

 
Fig. A6. Time of reaching the stationary state vs. specific capacitance of membrane (cm), for Ga = 1, Gm = 1. 

 

8.2 Computation of the ionic currents through cell 

membranes 

Here are presented the fundamental relations for calculation of membrane currents of potassium 

and sodium according to [77], and further implementation of these relations into the incremental-

iterative FE form. These relations are experimentally determined for Purkinje fibers. 

The potassium current IK is expressed as (in μA/cm2)  

( )( )1 2K K K m KI g g V V= + −  (B.1) 

where gK1 and gK2 are membrane conductivities, Vm  (in mV)  is the membrane potential (defined as 

the difference between potentials inside and outside of cell, and VK is equilibrium potential (in [77] 

taken to be -100mV); dimension of gK1 and gK2 is [μA/(cm2 mV)]. According to experimental 

measurements, the expressions for the conductivities are: 

( ) ( )1 1.2exp 90 / 50 0.015exp 90 / 60K m mg V V   = − − + +     (B.2) 

          ( )

( )

( )
( )

4

2 1.2

where

1

where

0.0001 50
,    0.002exp 90 / 80

exp 50 /10 1

K

n n

m

n n m

m

g n

dn
n n

dt

V
V

V

 

 

=

= − −

− −
= = − −  − − −  

 
(B.3) 

For sodium current density INa the expression is  

( )Na Na m NaI g V V= −  (B.4) 

where VNa=40mV and  
3400 0.14Nag m h= +  (B.5) 
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Expressions for parameters m and h are as follows: 

( )1m m

dm
m m

dt
 = − −  (B.6) 

where 

( )

( )

( )

( )

0.1 48 0.12 8
,     

exp 48 /15 1 exp 8 / 5 1

m m

m m

m m

V V

V V
 

− − +
= =

− − − + −      

 (B.7) 

 

and 

( )1h h

dh
h h

dt
 = − −  (B.8) 

 

where 

( )
1

42
0.17exp 90 / 20 ,     exp 1

10

m
h m h

V
V 

−

− −  
= − − = +     

  
 (B.9) 

We further integrate equations (B.3) and (B.6) within time step. Equation (B.3) can be written as 

( )n n n

dn
n

dt
  = − +  

Implicit integration scheme is used within time step t , so that  

( )
( ) ( ) 1

expt t t

n n n n n n

n n

n n t     
 

+  = − − + − +    +
 (B.10) 

where the right-upper indices t and t t+   refer to the start and end of time step.   

The analogous expression can be obtained for the parameters m and h: 

( )
( ) ( ) 1

expt t t

m m m m m m

m m

m m t     
 

+  = − − + − +    +
, 

(B.11) 

( )
( ) ( ) 1

expt t t

h h h h h h

h h

h h t     
 

+  = − − + − +    +
. 

With these coefficients determined for the end of time step, the conduction coefficients can be 

determined and the currents specified in (B.1) and (B.4) can be calculated. We calculate coefficients 

in (B.7) and (B.9) using the corresponding mean values of membrane potential Vm 

( )
1

2

t t t

m m mV V V += +  (B.12) 
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